References
1a
Loewenthal HJE. In Protective Groups in Organic Chemistry
McOmie JFW.
Plenum;
London:
1973.
Chap. 9.
1b
Kocienski PJ. In Protecting Groups
Thieme;
Stuttgart:
1994.
Chap. 5.
1c
Greene TW.
Wuts PGM. In Protective Groups in Organic Synthesis
3rd ed.:
Wiley;
New York:
1999.
Chap. 4.
2a
Schmitz E.
Eichhorn I. In The Chemistry of the Ether Linkage
Patai S.
Wiley;
New York:
1967.
Chap. 7.
2b
Mukaiyama T.
Murakami M.
Synthesis
1987,
1043
2c
Alexakis A.
Mangeney P.
Tetrahedron: Asymmetry
1990,
1:
477
3a
Meskens FAJ.
Synthesis
1981,
501
3b
Leonard NM.
Oswald MC.
Freiberg DA.
Nattier BA.
Smith RC.
Mohan RS.
J. Org. Chem.
2002,
67:
5202 ; and references cited therein
3c
Gopinath R.
Haque SJ.
Patel BK.
J. Org. Chem.
2002,
67:
5842
3d
Basu MK.
Samajdar S.
Becker FF.
Banik BK.
Synlett
2002,
319
For recent leading references, see:
4a
Kazemi F.
Kiasat AR.
Ebrahimi S.
Synth. Commun.
2003,
33:
999
4b
Yadav JS.
Reddy BVS.
Vishnumurthy P.
Tetrahedron Lett.
2003,
44:
5691
5
Sumida N.
Nishioka K.
Sato T.
Synlett
2001,
1921
6 Other lithium salts and alkali metal tetrafluoroborates are less effective than LiBF4 in our reaction system. The reaction of benzaldehyde under the identical conditions is as follows: LiCl (19%), LiBr (15%), LiClO4 (36%), LiOTf (35%), NaBF4 (8%), KBF4 (3%).
7
Gandini A.
Adv. Polym. Sci.
1977,
25:
47
8 Dimethyl acetalization of citronellal using electrogenerated acid afforded 6-methoxy-3,7-dimethyl-7-octenal dimethyl acetal (18%) as a by-product: Gora J.
Smigielski K.
Kula J.
Synthesis
1986,
586
9
Thurkauf A.
Jacobson AE.
Rice KC.
Synthesis
1988,
233
10 Both methanol and trimethyl orthformate were necessary in order to obtain the products in satisfactory yields. On the reaction of benzophenone (3 mmol) using LiBF4 (0.3 mmol): HC(OMe)3 (3.9 mmol) alone (90 °C, 19 h, 15%); MeOH (1.5 cm3) alone (reflux, 19 h, 2%).
11a
Tirado-Rives J.
Gandour RD.
Org. Prep. Proced. Int.
1985,
17:
62
11b
Ma S.
Venanzi LM.
Synlett
1993,
751 ; and references cited therein
For the success acetalization of carbonyl compounds in the presence of THP ethers, see:
12a
Hwu JR.
Leu L.-C.
Robl JA.
Anderson DA.
Wetzel JM.
J. Org. Chem.
1987,
52:
188
12b
Karimi B.
Ebrahimian GR.
Seradj H.
Org. Lett.
1999,
1:
1737
12c
Karimi B.
Golshani B.
Synthesis
2002,
784
13
Patwardhan SA.
Dev S.
Synthesis
1974,
348
14a
Firouzabadi H.
Iranpoor N.
Karimi B.
Synth. Commun.
1999,
29:
2255 ; and references cited therein
14b
Firouzabadi H.
Iranpoor N.
Karimi B.
Synlett
1999,
321
14c
Karimi B.
Seradj H.
Ebrahimian G.-R.
Synlett
1999,
1456
15 The spectroscopic data of new compounds are shown as follows.
4-(Methoxymethoxy)benzaldehyde Dimethyl Acetal: 1H NMR (CDCl3): δ = 3.32 (s, 6 H), 3.48 (s, 3 H), 5.18 (s, 2 H), 5.35 (s, 1 H), 7.03 (d, J = 8.85 Hz, 2 H), 7.36 (d, J = 8.85 Hz, 2 H). 13C NMR (CDCl3): δ = 52.6, 56.0, 94.4, 103.0, 115.9, 127.9, 131.6, 157.3.
4-(2-Methoxyethoxy)benzaldehyde Dimethyl Acetal: 1H NMR (CDCl3): δ = 3.32 (s, 6 H), 3.37 (s, 3 H), 3.53-3.57 (m, 2 H), 3.80-3.84 (m, 2 H), 5.27 (s, 2 H), 5.34 (s, 1 H), 7.05 (d, J = 8.70 Hz, 2 H), 7.36 (d, J = 8.70 Hz, 2 H). 13C NMR (CDCl3): δ = 52.6, 59.0, 67.6, 71.6, 93.4, 103.0, 115.9, 127.9, 131.6, 157.3.
4-(Perhydro-2
H
-pyran-2-yloxymethyl)benzaldehyde Dimethyl Acetal: 1H NMR (CDCl3): δ = 1.49-1.92 (m, 6 H), 3.33 (s, 6 H), 3.52-3.56 (m, 1 H), 3.89-3.95 (m, 1 H), 4.51 (d, J = 12.2 Hz, 1 H), 4.70 (t, J = 3.35 Hz, 1 H), 4.79 (d, J = 12.2 Hz, 1 H), 5.39 (s, 1 H), 7.37 (d, J = 7.95 Hz, 2 H), 7.43 (d, J = 7.95 Hz, 2 H). 13C NMR (CDCl3): δ = 19.4, 25.5, 30.6, 52.7, 62.1, 68.5, 97.8, 103.1, 126.7, 127.6, 137.3, 138.6.
4-(5,5-Dimethyl-1,3-dioxan-2-yl)benzaldehyde Dimethyl Acetal: 1H NMR (CDCl3): δ = 0.80 (s, 3 H), 1.30 (s, 3 H), 3.29 (s, 6 H), 3.65 (d, J = 10.9 Hz, 2 H), 3.77 (d, J = 10.9 Hz, 2 H), 5.40 (s, 1 H), 5.41 (s, 1 H), 7.46 (d, J = 8.25 Hz, 2 H), 7.51 (d, J = 8.25 Hz, 2 H). 13C NMR (CDCl3): δ = 21.9, 23.0, 30.2, 52.4, 77.7, 101.5, 102.6, 126.0, 126.7, 138.6.