References
1a
Handbook of Organopalladium Chemistry for Organic Synthesis
Vol. I and II:
Negishi E.
John Wiley and Sons, Inc.;
New York:
2002.
1b
Li JJ.
Gribble GW.
Palladium in Heterocyclic Chemistry
Elsevier Science Ltd.;
Oxford:
2000.
2
Mori M.
Ban Y.
Tetrahedron Lett.
1977,
18:
1037
Synthesis of indoles by palladium-catalyzed cyclization of N-alkenyl-o-haloanilines, see:
3a
Caddick S.
Kofie W.
Tetrahedron Lett.
2002,
43:
9347
3b
Michael JP.
de Koning CB.
Petersen RL.
Stanbury TV.
Tetrahedron Lett.
2001,
42:
7513
3c
Latham EJ.
Stanforth SP.
J. Chem. Soc, Perkin Trans. 1
1997,
2059
3d
Blache Y.
Sinibaldi-Troin M.-E.
Voldoire A.
Chavignon O.
Gramain J.-C.
Teulade J.-C.
Chapat J.-P.
J. Org. Chem.
1997,
62:
8553
3e
Chen LC.
Yang SC.
Wang HM.
Synthesis
1995,
385
3f
Michael JP.
Chang S.-F.
Wilson C.
Tetrahedron Lett.
1993,
34:
8365
3g
Sakamoto T.
Nagano T.
Kondo Y.
Yamanaka H.
Synthesis
1990,
215
3h
Kasahara A.
Izumi T.
Murakami S.
Yanai H.
Takatori M.
Bull. Chem. Soc. Jpn.
1986,
59:
927
3i
Iida H.
Yuasa Y.
Kibayashi C.
J. Org. Chem.
1980,
45:
2938
4a
Sato Y.
Watanabe S.
Shibasaki M.
Tetrahedron Lett.
1992,
33:
2589
4b
Sato Y.
Honda T.
Shibasaki M.
Tetrahedron Lett.
1992,
33:
2593
4c
Sato Y.
Nukui S.
Sodeoka M.
Shibasaki M.
Tetrahedron
1994,
50:
371
5 While other silver salts, such as Ag2CO3, AgPF6, AgOTf, and AgBF4, also promoted this reaction, they were less effective.
6
Awang K.
Sévenet T.
Païs M.
Hadi AHA.
J. Nat. Prod.
1993,
56:
1134
7
Pearson WH.
Mi Y.
Lee IY.
Stoy P.
J. Am. Chem. Soc.
2001,
123:
6724
8
Lennon M.
Proctor GR.
J. Chem. Soc., Perkin Trans. 1
1979,
2009
9
Experimental Procedure for the Synthesis of 13: A mixture of enamine 12 (0.15 g, 0.28 mmol), Ag3PO4 (0.12 g, 0.28 mmol), and Pd(PPh3)4 (32 mg, 28 µmol) was heated (18 h) with stirring in DMSO (1.0 mL) at 100 °C under Ar. The mixture was diluted with Et2O at r.t., and filtered through a celite pad. The filtrate was concentrated and the residue was purified by silica gel column chromatography (EtOAc:n-hexane, 1:5) to give 13 as a colorless oil (79 mg, 69%). 1H NMR (600 MHz, CDCl3): δ = 1.35 (t, J = 7.1 Hz, 3 H), 1.87 (td, J = 2.8, 12.9 Hz, 1 H), 2.18 (ddd, J = 3.9, 12.6, 14.8 Hz, 1 H), 2.56 (t, J = 12.1 Hz, 1 H), 2.66 (tt, J = 5.0, 12.9 Hz, 1 H), 2.94 (ddd, J = 3.0, 12.1, 15.1 Hz, 1 H), 3.13 (ddd, J = 1.4, 3.6, 15.1 Hz, 1 H), 3.48 (dd, J = 4.1, 15.1 Hz, 1 H), 4.12 (dt, J = 3.9, 13.2 Hz, 1 H), 4.24-4.32 (m, 2 H), 4.37 (dd, J = 5.2, 12.7 Hz, 1 H), 7.06 (td, J = 1.1, 7.1 Hz, 1 H), 7.13 (td, J = 1.1, 8.0 Hz, 1 H), 7.33 (d, J = 8.0 Hz, 1 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.47 (td, J = 1.4, 7.7 Hz, 2 H), 7.54 (tt, J = 1.4, 7.2 Hz, 1 H), 7.78-7.80 (m, 2 H), 9.11 (s, 1 H). 13C NMR (150 MHz, CDCl3): δ = 14.3, 25.8, 36.5, 39.4, 48.5, 53.7, 61.6, 111.2, 111.3, 117.6, 119.5, 121.9, 127.0, 129.2, 130.9, 132.7, 135.5, 139.1, 174.8.