Background and objective: Animal data suggest that mobilized bone marrow cells (BMC) may contribute to
tissue regeneration after myocardial infarction (MI). However the safety, feasibility
and efficacy of treatment with granulocyte colony-stimulating factor (G-CSF) to
mobilize BMC after acute myocardial infarction in patients is unknown. We analysed
cardiac function and perfusion in 5 patients who were treated with G-CSF in addition
to standard therapeutical regimen.
Methods and results: 48 h after successful recanalization and stent implantation in 5 patients with
acute MI, the patients received 10 mg/kg body weight/day G-CSF subcutaneously
for a mean treatment duration of 7.6±0.5 days. Peak value of CD34+ cells, a multipotent
subfraction of bone marrow cells, was reached after 5.0±0.7 days. After 3 months
of follow-up global left ventricular ejection fraction (determined by radionuclideventriculography)
increased significantly from 42.2±6.6 % to 51.6±8.3 % (P<0.05). The wall motion
score and the wall perfusion score (determined by ECG gated SPECT) decreased from
13.5±3.6 to 9.9±3.5 (P<0.05) and from 9.6±2.9 to 7.0±4.5 (P<0.05), respectively,
indicating a significant improvement of myocardial function and perfusion. No
severe side effects of G-CSF treatment were observed. Malignant arrhythmias were
not observed either.
Conclusion: In patients with acute MI, treatment with G-CSF to mobilize BMC appears to be
well toleated under clinical conditions. Improved cardiac function and perfusion
may be attributed to BMC-associated promotion of myocardial regeneration and neovascularization.
References
- 1
Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, Grunwald F, Aicher A,
Urbich C, Martin H. et al .
Transplantation of Progenitor Cells and Regeneration Enhancem ent in Acute Myocardial
Infarction (TOPCARE-AMI).
Circulation.
2002;
106
3009-3017
- 2
Cerqueira M D, Weissman N J, Dilsizian V, Jacobs A K, Kaul S, Laskey W K, Pennell D J,
Rumberger J A, Ryan T, Verani M S.
Standardized myocardial segmentation and nomenclature for tomographic imaging
of the heart: a statement for healthcare professionals from the Cardiac Imaging
Committee of the Council on Clinical Cardiology of the American Heart Association.
Circulation.
2002;
105
539-542
- 3
Deb A, Wang S, Skelding K A, Miller D, Simper D, Caplice N M.
Bone marrow-derived cardiomyocytes are present in adult human heart: A study
of gender-mismatched bone marrow transplantation patients.
Circulation.
2003;
107
1247-1249
- 4
Frangogiannis N G, Smith C W, Entman M L.
The inflammatory response in myocardial infarction.
Cardiovasc Res.
2002;
53
31-47
- 5
Goodell M A, Jackson K A, Majka S M, Mi T, Wang H, Pocius J, Hartley C J, Majesky M W,
Entman M L, Michael L H. et al .
Stem cell plasticity in muscle and bone marrow.
Ann N Y Acad Sci.
2001;
938
208-218
, discussion 218 - 20.
- 6
Grigg A P, Roberts A W, Raunow H, Houghton S, Layton J E, Boyd A W, McGrath K M, Maher D.
Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating
factor) for mobilization and collection of peripheral blood progenitor cells
in normal volunteers.
Blood.
1995;
86
4437-4445
- 7
Han C I, Campbell G R, Campbell J H.
Circulating bone marrow cells can contribute to neointimal formation.
J Vasc Res.
2001;
38
113-119
- 8
Kocher A A, Schuster M D, Szabolcs M J, Takuma S, Burkhoff D, Wang J, Homma S, Edwards N M,
Itescu S.
Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts
prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function.
Nat Med.
2001;
7
430-436
- 9
Li R K, Mickle D A, Weisel R D, Rao V, Jia Z Q.
Optimal time for cardiomyocyte transplantation to maximize myocardial function
after left ventricular injury.
Ann Thorac Surg.
2001;
72
1957-193
- 10
Montalescot G, Barragan P, Wittenberg O, Ecollan P, Elhadad S, Villain P, Boulenc J M,
Morice M C, Maillard L, Pansieri M. et al .
Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial
infarction.
N Engl J Med.
2001;
344
1895-1903
- 11
Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson S M, Li B, Pickel J, McKay R,
Nadal-Ginard B, Bodine D M. et al .
Bone marrow cells regenerate infarcted myocardium.
Nature.
2001;
410
701-705
- 12
Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M,
Leri A, Anversa P.
Mobilized bone marrow cells repair the infarcted heart, improving function and
survival.
Proc Natl Acad Sci U S A.
2001;
98
10344-10349
- 13
Quaini F, Urbanek K, Beltrami A P, Finato N, Beltrami C A, Nadal-Ginard B, Kajstura J,
Leri A, Anversa P.
Chimerism of the transplanted heart.
N Engl J Med.
2002;
346
5-15
- 14
Stone G W, Grines C L, Cox D A, Garcia E, Tcheng J E, Griffin J J, Guagliumi G, Stuckey T,
Turco M, Carroll J D. et al .
Comparison of angioplasty with stenting, with or without abciximab, in acute
myocardial infarction.
N Engl J Med.
2002;
346
957-966
- 15
Strauer B E, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg R V, Kogler G, Wernet P.
Repair of infarcted myocardium by autologous intracoronary mononuclear bone
marrow cell transplantation in humans.
Circulation.
2002;
106
1913-1918
- 16
Strauer B E, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg R V, Kogler G, Wernet P.
Intracoronary, human autologous stem cell transplantation for myocardial regeneration
following myocardial infarction.
Dtsch Med Wochenschr.
2001;
126
932-938
- 17
Tomita S, Li R K, Weisel R D, Mickle D A, Kim E J, Sakai T, Jia Z Q.
Autologous transplantation of bone marrow cells improves damaged heart function.
Circulation.
1999;
100
II247-256
Friedhelm Kuethe
Friedrich-Schiller-Universitaet Jena, Klinik fuer Innere Medizin I
Erlanger Allee 101
D-07740 Jena
Phone: 1149/3641/939138
Fax: 1149/3641/939363
Email: Friedhelm.Kuethe@med.uni-jena.de