Int J Sports Med 2004; 25(6): 415-420
DOI: 10.1055/s-2004-820960
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Oxygen Uptake-Work Rate Relationship During Two Consecutive Ramp Exercise Tests

A. M. Jones1 , H. Carter2
  • 1Department of Exercise and Sport Science, Manchester Metropolitan University, Alsager, United Kingdom
  • 2Chelsea School, University Of Brighton, Eastbourne, United Kingdom
Further Information

Publication History

Accepted after revision: March 16, 2004

Publication Date:
27 May 2004 (online)

Abstract

The performance of prior high intensity constant work rate (CWR) exercise significantly influences the gain of the fundamental oxygen uptake (V·O2) response during subsequent high intensity CWR exercise. The purpose of the present study was to investigate whether equivalent effects could be elicited in the second of two bouts of exhaustive ramp exercise. We therefore hypothesised that a prior bout of exhaustive ramp exercise would increase the V·O2-work rate (ΔV·O2/ΔWR) slope during subsequent ramp exercise. Nine healthy males performed two ramp exercise tests to exhaustion on an electrically braked cycle ergometer separated by a 10-min period of cycling at 20 W. Pulmonary V·O2 was measured breath-by-breath throughout both tests, and the mean response time (MRT) and the ΔV·O2/ΔWR slope for exercise below the gas exchange threshold (GET) (S1), above the GET (S2), and over the S1 + S2 region (ST) were determined. Paired t-tests were used to analyse the data with significance accepted at p < 0.05. Blood [lactate] was higher at the onset of the second ramp test compared to the first (mean ± SEM 1.2 ± 0.1 vs. 6.2 ± 0.7 mM; p < 0.01), but baseline V·O2 was not significantly different between tests (0.93 ± 0.05 vs. 0.99 ± 0.06 L · min-1). The MRT (42 ± 4 vs. 40 ± 5 s) did not differ between tests, but the ΔV·O2/ΔWR slope was steeper in the second ramp test for S2 (9.1 ± 0.4 vs. 9.8 ± 0.5 ml · min-1 · W-1; p < 0.01) and ST (9.0 ± 0.4 vs. 9.6 ± 0.5 ml · min-1 · W-1; p < 0.05). The demonstration that prior ramp exercise increases the ΔV·O2/ΔWR slope during subsequent ramp exercise is consistent with the results of previous CWR studies and indicates that exercise economy is sensitive to the prior activity of the engaged muscles.

References

  • 1 Bangsbo J, Madsen K, Kiens B, Richter E A. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man.  J Physiol. 1996;  495 587-596
  • 2 Barstow T J, Jones A M, Nguyen P, Casaburi R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans.  Exp Physiol. 2000;  85 109-116
  • 3 Barstow T J, Jones A M, Nguyen P, Casaburi R. Influence of muscle fibre type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  75 755-762
  • 4 Bearden S E, Moffatt R J. V·O2 and heart rate kinetics in cycling: transitions from an elevated baseline.  J Appl Physiol. 2001;  90 2081-2087
  • 5 Bishop D, Bonetti D, Dawson B. The influence of three different warm-up intensities on print kayak performance in trained athletes.  Med Sci Sports Exerc. 2001;  33 1026-1032
  • 6 Burnley M, Doust J H, Ball D, Jones A M. Effects of prior exercise on V·O2 kinetics during the on-transient of heavy exercise are related to changes in muscle activity.  J Appl Physiol. 2002;  93 167-174
  • 7 Burnley M, Doust J H, Carter H, Jones A M. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.  Exp Physiol. 2001;  86 417-425
  • 8 Burnley M, Jones A M, Carter H, Doust J H. Effects of prior heavy exercise on phase II pulmonary oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 2000;  89 1387-1396
  • 9 Busse M W, Maassen N. Effect of consecutive exercise bouts on plasma potassium concentration during exercise and recovery.  Med Sci Sports Exerc. 1989;  21 489-493
  • 10 Busse M W, Scholz J, Saxler F, Maassen N, Boning D. Relationship between plasma potassium and ventilation during successive periods of exercise in men.  Eur J Appl Physiol. 1992;  64 22-25
  • 11 Carter H, Jones A M, Doust J H. Effect of incremental test protocol on the lactate minimum speed.  Med Sci Sports Exerc. 1999;  31 837-845
  • 12 Davis H A, Gass G C. Blood lactate concentrations during incremental work before and after maximum exercise.  Br J Sports Med. 1979;  13 165-169
  • 13 Davis J A, Whipp B J, Lamarra N, Huntsman D J, Frank M H, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test.  Med Sci Sports Exerc. 1982;  14 339-343
  • 14 Fukuba Y, Hayashi N, Koga S, Yoshida T. V·O2 kinetics in heavy exercise is not altered by prior exercise with a different muscle group.  J Appl Physiol. 2002;  92 2467-2474
  • 15 Gaesser G A, Poole D C. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-70
  • 16 Gerbino A, Ward S A, Whipp B J. Effects of prior exercise on pulmonary gas exchange kinetics during high-intensity exercise in humans.  J Appl Physiol. 1996;  80 99-107
  • 17 Grassi B, Poole D C, Richardson R S, Knight D R, Erickson B K, Wagner P D. Muscle O2 uptake kinetics in humans: Implications for metabolic control.  J Appl Physiol. 1996;  80 988-998
  • 18 Hansen J E, Casaburi R, Cooper D M, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise.  Eur J Appl Physiol. 1988;  57 140-145
  • 19 Hogan M C, Welch H G. Effect of varied lactate levels on bicycle ergometer performance.  J Appl Physiol. 1984;  57 507-513
  • 20 Hughson R L, Inman M D. Oxygen uptake kinetics from ramp work tests: variability of single test values.  J Appl Physiol. 1986;  61 373-376
  • 21 Jones A M, Doust J H. The validity of the lactate minimum test for determination of the maximal lactate steady state, and physiological correlates to 8 km running performance.  Med Sci Sports Exerc. 1998;  30 1304-1313
  • 22 Jones A M, Pringle J SM, Campbell I T. Influence of muscle fibre type and pedal rate on the V·O2 -work rate slope during ramp exercise.  Eur J Appl Physiol. 2004;  91 238-245
  • 23 Jones A M, Wilkerson D P, Burnley M, Koppo K. Prior heavy exercise enhances performance during subsequent peri-maximal exercise.  Med Sci Sports Exerc. 2003;  35 2085-2092
  • 24 Karlsson J, Bonde-Petersen F, Henriksson J, Knuttgen H G. Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise.  J Appl Physiol. 1975;  38 763-767
  • 25 Koppo K, Bouckaert J. The effect of prior high-intensity cycling exercise on the V·O2 kinetics during high-intensity cycling exercise is situated at the additional slow component.  Int J Sports Med. 2001;  22 21-26
  • 26 Koppo K, Bouckaert J. The decrease in the V·O2 slow component induced by prior exercise does not affect the time to exhaustion.  Int J Sports Med. 2002;  23 262-267
  • 27 Lamarra N, Whipp B J, Ward S A, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics.  J Appl Physiol. 1987;  62 2003-2012
  • 28 MacDonald M, Pedersen P K, Hughson R L. Acceleration of V·O2 kinetics in heavy sub-maximal exercise by hyperoxia and prior high-intensity exercise.  J Appl Physiol. 1997;  83 1318-1325
  • 29 Mallory L A, Scheuermann B W, Hoelting B D, Weiss M L, Mcallister R M, Barstow T J. Influence of peak V·O2 and muscle fibre type on the efficiency of moderate exercise.  Med Sci Sports Exerc. 2002;  34 1279-1287
  • 30 Meyer K, Schwaibold M, Hajric R, Westbrook S, Ebfeld D, Leyk D, Roskamm H. Delayed V·O2 kinetics during ramp exercise: a criterion for cardiopulmonary exercise capacity in chronic heart failure.  Med Sci Sports Exerc. 1998;  30 643-648
  • 31 Nielsen O B, De Paoli F, Overgaard K. Protective effects of lactic acid on force production in rat skeletal muscle.  J Physiol. 2001;  536 161-166
  • 32 Pendergast D, Leibowitz R, Wilson D, Cerretelli P. The effect of preceding anaerobic exercise on aerobic and anaerobic work.  Eur J Appl Physiol. 1983;  52 29-35
  • 33 Poole D C, Gladden L B, Kurdak S, Hogan M C. L-(+)-Lactate infusion into working dog gastrocnemius: no evidence that lactate per se mediates V·O2 slow component.  J Appl Physiol. 1994;  76 787-792
  • 34 Pringle J SM, Doust J H, Carter H, Tolfrey K, Campbell I T, Jones A M. Oxygen uptake kinetics during moderate, heavy, and severe intensity “submaximal” exercise in humans: influence of muscle fibre type and capillarity.  Eur J Appl Physiol. 2003;  89 289-300
  • 35 Pringle J SM, Doust J H, Carter H, Tolfrey K, Jones A M. Effect of pedal rate on primary and slow component oxygen uptake responses during heavy cycle exercise.  J Appl Physiol. 2003;  94 1501-1507
  • 36 Roth D A, Stanley W C, Brooks G A. Induced lactacidemia does not affect postexercise O2 consumption.  J Appl Physiol. 1988;  65 1045-1049
  • 37 Scheuermann B W, Hoelting B D, Noble M L, Barstow T J. The slow component of O2 is not accompanied by changes in EMG during repeated bouts of heavy exercise.  J Physiol. 2001;  531 245-256
  • 38 Stamford B A, Weltman A, Moffatt R J, Fulco C. Effects of severe prior exercise on assessment of maximal oxygen uptake during one- versus two-legged cycling.  Res Q. 1978;  49 363-371
  • 39 Szentesi P, Zaremba R, Van Mechelen W, Stienen G JM. ATP utilisation for calcium uptake and force production in different types of human skeletal muscle fibres.  J Physiol. 2001;  531 393-403
  • 40 Tordi N, Perrey S, Harvey A, Hughson R L. Oxygen uptake kinetics during two bouts of heavy cycle separated by fatiguing sprint exercise in humans.  J Appl Physiol. 2003;  94 533-541
  • 41 Van Hall G. Lactate as a fuel for mitochondrial respiration.  Acta Physiol Scand. 2000;  168 643-656
  • 42 Walsh M L, Banister E W. The influence of inspired oxygen on the oxygen uptake response to ramp exercise.  Eur J Appl Physiol. 1995;  72 71-75
  • 43 Wasserman K, Hansen J E, Sue D Y, Whipp B J, Casaburi R. Principles of Exercise Testing and Interpretation. 3rd ed. Philadelphia, USA; Lea & Febiger 1999
  • 44 Westerblad H, Allen D G, Lannergren J. Muscle fatigue: Lactic acid or inorganic phosphate the major cause?.  News Physiol Sci. 2002;  17 17-21
  • 45 Whipp B J. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 46 Whipp B J, Davis J A, Torres F, Wasserman K. A test to determine parameters of aerobic function during exercise.  J Appl Physiol. 1981;  50 217-221
  • 47 Whipp B J, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work.  J Appl Physiol. 1972;  33 351-356

Dr A. M. Jones

Department of Exercise and Sport Science, Manchester Metropolitan University

Hassall Road

Alsager, ST7 2 HL

United Kingdom

Phone: + 01612475656

Fax: + 0 16 12 47 63 75

Email: a.m.jones@mmu.ac.uk