Exp Clin Endocrinol Diabetes 2004; 112(7): 383-389
DOI: 10.1055/s-2004-821029
Article

J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York

Identification of Influencing Variables on Adiponectin Serum Levels in Diabetes Mellitus Type 1 and Type 2

A. Schäffler1 , H. Herfarth1 , G. Paul1 , A. Ehling1 , U. Müller-Ladner1 , J. Schölmerich1 , B. Zietz1
  • 1Department of Internal Medicine I, University of Regensburg, Germany
Weitere Informationen

Publikationsverlauf

Received: June 23, 2003 First decision: September 10, 2003

Accepted: December 8, 2003

Publikationsdatum:
07. Juli 2004 (online)

Abstract

Background: Adiponectin represents an adipocyte-specific secretory protein that has been discussed recently as candidate gene and promising new drug target to restore insulin sensitivity in diabetes mellitus type 2.

Aim: The aim of the present study was to define influencing variables on adiponectin serum levels in a large cohort of caucasian patients with type 1/type 2 diabetes and healthy controls. Additionally, adiponectin gene polymorphisms (Tyr111His and Gly15Gly) were investigated for possible associations with adiponectin serum levels.

Methods: Adiponectin serum concentrations were measured in a metabolically well characterized cohort of 892 caucasian patients (556 with type 2 diabetes, 118 with type 1 diabetes, 218 controls) by ELISA. Gene polymorphisms were determined by PCR-based RFLP.

Results: 1) Adiponectin values are dependent on gender with higher levels in diabetic females than in diabetic males. This gender-specific effect was only restricted to patients with diabetes and cannot be observed in controls. 2) In contrast to previous studies, the presence of diabetes does not influence adiponectin serum levels after correction for BMI. In addition, age has no influence on adiponectin levels. 3) Adiponectin levels are dependent on renal function at a creatinine clearance < 45 ml/min. 4) Regression analysis showed a significant, but only weak correlation between BMI and adiponectin in patients with diabetes mellitus type 2 (r = 0.47) and type 1 (r = 0.57). 5) Adiponectin gene polymorphisms (Tyr111His and Gly15Gly) do not influence adiponectin levels.

Conclusions: Adiponectin serum concentrations can only be interpreted after careful correction for gender and renal function, whereas the genetic variants Tyr11His and Gly15Gly do not seem to play a role. The correlation between BMI and adiponectin was weaker than expected in diabetic patients.

References

  • 1 Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K, Tokunaoga K, Matsuzawa Y. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity.  Nature Med. 1996;  2 800-803
  • 2 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose collagen-like factor, apM1.  Biochem Biophys Res Commun. 1996;  221 286-289
  • 3 Scherer P E, Williams S, Fogliano M, Baldini G, Lodish H F. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26746-26749
  • 4 Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10697-10703
  • 5 Shapiro L, Scherer P E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor.  Curr Biol. 1998;  8 335-338
  • 6 Mora S, Pessin J E. An adipocentric view of signalling and intracellular trafficking.  Diab Metab Res Rev. 2002;  18 345-356
  • 7 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nature Med. 2001;  7 947-953
  • 8 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nature Med. 2001;  7 941-946
  • 9 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  277 25863-25866
  • 10 Lindsay R S, Funahashi T, Hanson R L, Matsuzawa Y, Tanaka S, Tataranni P A, Knowler W C, Krakoff J. Adiponectin and development of type 2 diabetes in the Pima Indian population.  Lancet. 2002;  360 57-58
  • 11 Spranger J, Kroke A, Mohlig M, Bergmann M M, Ristow M, Boening H, Pfeiffer A F. Adiponectin and protection against type 2 diabetes mellitus.  Lancet. 2003;  361 226-228
  • 12 Zietz B, Barth N, Schölmerich J, Schmitz G, Schäffler A. Gly15Gly polymorphism within the human adipocyte-specific apM-1 gene but not Tyr111His polymorphism is associated with higher levels of cholesterol and LDL-cholesterol in caucasian patients with type 2 diabetes.  Exp Clin Endocrinol Diabetes. 2001;  109 320-325
  • 13 Zietz B, Herfarth H, Paul G, Ehling A, Mueller-Ladner U, Schölmerich J, Schäffler A. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes.  FEBS Lett. 2003;  545 103-104
  • 14 Schäffler A, Barth N, Palitzsch K D, Schölmerich J, Schmitz G. Mutation analysis of the human adipocyte-specific apM-1 gene.  Eur J Clin Invest. 2000;  30 879-887
  • 15 Arita Y, Shinhi K, Ouchi N, Takahashi M, Maeda K, Miyawa J, Hotta K, Shimomura I, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 16 Nakano Y, Tobe T, Choi-Miura N H, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma.  J Biochem. 1996;  120 803-812
  • 17 Statnick M A, Beavers L S, Conner L J, Corominola H, Johnson D, Hammond C D, Rafaelff-Phail R, Seng T, Suter T M, Sluka J P, Ravussin E, Gadski R A, Caro J F. Decreased expression of apM-1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes.  Int J Exp Diab Res. 2000;  1 81-88
  • 18 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arter Thromb Vasc Biol. 2000;  20 1595-1599
  • 19 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni A. Hypoadiponectinemia in obesity and type 2 diabetes: close assoziation with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 20 Zoccali C, Mallamaci F, Tripepi G, Benedetto F A, Cutrupi S, Parlongo S, Malatino L S, Bonanno G, Seminara G, Rapisarda F, Fatuzzo P, Buemi M, Nicocia G, Tanaka S, Ouchi N, Kihara S, Funahashi T, Matsuzawa Y. Adiponectin, metabolic risk factors and cardiovascular disease among patients with end-stage renal disease.  J Am Soc Nephrol. 2001;  13 134-141
  • 21 Ukkola O, Ravussin E, Jacobson P, Sjostrom L, Bouchard C. Mutations in the adiponectin gene in lean and obese subjects from the Swedish obese subjects cohort.  Metabol. 2003;  52 881-884
  • 22 Hara K, Boutin P, Mori Y, Tobe K, Dina C, Ysuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.  Diabetes. 2002;  51 536-540
  • 23 Menzaghi C, Ercolini T, Di Paola T, Berg A H, Warram J H, Scherer P E, Trischitta V, Doria A. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome.  Diabetes. 2002;  51 2306-2312
  • 24 Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain B, Kadowaki T, Froguel P. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians.  Hum Mol Gen. 2002;  11 2607-2614
  • 25 Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machiacao F, Haring H. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: ineraction with family history of type 2 diabetes.  Diabetes. 2002;  51 37-41
  • 26 Yang W S, Tsou P L, Lee W J, Tseng D L, Chen C L, Peng C C, Lee K C, Chen M J, Huang C Jl, Tai T Y, Chuang L M. Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity.  J Molec Med. 2003;  81 428-434
  • 27 Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, Shimomura I, Hotta K, Kuriyama H, Kihara S, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Genomic structure and mutations in adipose-specific gene, adiponectin.  Int J Obes Rel Metabol Disord. 2000;  24 861-868
  • 28 Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, Ouchi N, Kihara S, Kawamoto T, Sumitsuji S, Funahashi T, Matsuzawa Y. Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome.  Diabetes. 2002;  51 2325-2328

M. D. A. Schäffler

Department of Internal Medicine I
University of Regensburg

93042 Regensburg

Germany

Telefon: + 499419447017

Fax: + 49 94 19 44 70 19

eMail: andreas.schaeffler@klinik.uni-regensburg.de