Int J Sports Med 2005; 26(5): 339-343
DOI: 10.1055/s-2004-821041
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Short-Term Concentric vs. Eccentric Resistance Training on Single Muscle Fiber MHC Distribution in Humans

U. Raue1 , B. Terpstra1 , D. L. Williamson1 , P. M. Gallagher1 , S. W. Trappe1
  • 1Human Performance Laboratory, Ball State University, Muncie, Indiana, USA
Further Information

Publication History

Accepted after revision: February 9, 2004

Publication Date:
10 September 2004 (online)

Abstract

The purpose of this investigation was to determine the effects of a concentric vs. eccentric resistance training program on single muscle fiber myosin heavy chain (MHC) adaptations in humans. Fifteen sedentary, healthy males were divided into three groups: concentric training (CTG) (n = 6, 24.2 ± 1.7 y, 181 ± 2 cm, 82.5 ± 4.6 kg), eccentric training (ETG) (n = 6, 23.7 ± 1.6 y, 178 ± 3 cm, 90.4 ± 6.1 kg), and control (CTL) (n = 3, 23 ± 1.5 y, 181 ± 2 cm, 97 ± 13.2 kg). The subjects performed 4 sets of 8 unilateral repetitions starting at 80 % of concentric 1-RM, 3 days/week for a total of 4 weeks. Subjects were tested pre- and post-training for concentric 1-RM. Muscle biopsies were obtained from the vastus lateralis pre- and post-training for determination of single fiber MHC isoform distribution using SDS-PAGE/silver staining (100 fibers analyzed/subject pre- and post-training). Fibers expressing more than one MHC isoform (i.e., hybrid fibers) were analyzed for relative MHC isoform proportions via densitometry. The training program resulted in a 19 % 1-RM strength gain for CTG (p < 0.05) with no change in ETG or CTL. MHC-IIx fibers decreased by 7 % in CTG (p < 0.05) and ETG had an 11 % increase in total hybrids (MHC-I/IIa + MHC-IIa/IIx) (p < 0.05). No other differences were noted in MHC distribution among the three groups. Densitometry analysis of hybrid fibers showed no change in relative MHC isoform proportions pre- to post-training for any group. These data suggest that the MHC distribution did not change dramatically as a result of 4 weeks of concentric vs. eccentric resistance training despite the increase in whole muscle strength from concentric muscle actions.

References

  • 1 Aagaard P, Andersen J L, Dyhre-Poulsen P, Leffers A, Wagner A, Magnusson S P, Halkjaer-Kristensen J, Simonsen E B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture.  J Physiol. 2001;  534 (Pt. 2) 613-623
  • 2 Aagaard P, Simonsen E B, Andersen J L, Magnusson S P, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training.  J Appl Physiol. 2000;  89 2249-2257
  • 3 Adams G R, Hather B M, Baldwin K M, Dudley G A. Skeletal muscle myosin heavy chain composition and resistance training.  J Appl Physiol. 1993;  74 911-915
  • 4 Asmussen E. Positive and negative muscular work.  Acta Physiol Scand. 1953;  28 364-382
  • 5 Balagopal P, Ljungqvist O, Nair K S. Skeletal muscle myosin heavy-chain synthesis rate in healthy humans.  Am J Physiol. 1997;  272 45-50
  • 6 Balagopal P, Rooyackers O E, Adey D B, Ades P A, Nair K S. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans.  Am J Physiol. 1997;  273 790-800
  • 7 Balagopal P, Schimke J C, Ades P, Adey D, Nair K S. Age effect on transcript levels and synthesis rate of muscle MHC and response to resistance exercise.  Am J Physiol Endocrinol Metab. 2001;  280 203-208
  • 8 Barany M. ATPase activity of myosin correlated with speed of muscle shortening.  J Gen Physiol. 1967;  50 197-218
  • 9 Bergstrom J. Muscle electrolytes in man.  Scand J Clin Lab Invest. 1962;  68 1-110
  • 10 Carroll T J, Abernethy P J, Logan P A, Barber M, McEniery M T. Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week.  Eur J Appl Physiol. 1998;  78 270-275
  • 11 Colliander E B, Tesch P A. Effects of eccentric and concentric muscle actions in resistance training.  Acta Physiol Scand. 1990;  140 31-39
  • 12 Dudley G A, Tesch P A, Miller B J, Buchanan P. Importance of eccentric actions in performance adaptations to resistance training.  Aviat Space Environ Med. 1991;  62 543-550
  • 13 Hasten D L, Morris G S, Ramanadham S, Yarasheski K E. Isolation of human skeletal muscle myosin heavy chain and actin for measurement of fractional synthesis rates.  Am J Physiol. 1998;  275 1092-1099
  • 14 Johnson B L. Eccentric vs. concentric muscle training for strength development.  Med Sci Sports. 1972;  4 111-115
  • 15 Johnson B L, Adamczyk J W, Tennoe K O, Stromme S B. A comparison of concentric and eccentric muscle training.  Med Sci Sports. 1976;  8 35-38
  • 16 Komi P V, Buskirk E R. Effect of eccentric and concentric muscle conditioning on tension and electrical activity of human muscle.  Ergonomics. 1972;  15 417-434
  • 17 Mannheimer J S. A comparison of strength gain between concentric and eccentric contractions.  Phys Ther. 1969;  49 1201-1207
  • 18 Moritani T, deVries H A. Neural factors versus hypertrophy in the time course of muscle strength gain.  Am J Phys Med. 1979;  58 115-130
  • 19 Pette D, Staron R S. Myosin isoforms, muscle fiber types, and transitions.  Microsc Res Tech. 2000;  50 500-509
  • 20 Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance.  Physiol Rev. 1996;  76 371-423
  • 21 Staron R S, Karapondo D L, Kraemer W J, Fry A C, Gordon S E, Falkel J E, Hagerman F C, Hikida R S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women.  J Appl Physiol. 1994;  76 1247-1255
  • 22 Trappe S, Costill D, Thomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties.  Med Sci Sports Exerc. 2001;  33 48-56
  • 23 Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D. Resistance training improves single muscle fiber contractile function in older women.  Am J Physiol Cell Physiol. 2001;  281 398-406
  • 24 Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men.  J Appl Physiol. 2000;  89 143-152
  • 25 Widrick J J, Knuth S T, Norenberg K M, Romatowski J G, Bain J L, Riley D A, Karhanek M, Trappe S W, Trappe T A, Costill D L, Fitts R H. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres.  J Physiol. 1999;  516 915-930
  • 26 Widrick J J, Romatowski J G, Bain J L, Trappe S W, Trappe T A, Thompson J L, Costill D L, Riley D A, Fitts R H. Effect of 17 days of bed rest on peak isometric force and unloaded shortening velocity of human soleus fibers.  Am J Physiol. 1997;  273 1690-1699
  • 27 Williamson D L, Gallagher P M, Carroll C C, Raue U, Trappe S W. Reduction in hybrid single muscle fiber proportions with resistance training in humans.  J Appl Physiol. 2001;  91 1955-1961
  • 28 Williamson D L, Godard M P, Porter D A, Costill D L, Trappe S W. Progressive resistance training reduces myosin heavy chain coexpression in single muscle fibers from older men.  J Appl Physiol. 2000;  88 627-633

PhD S. Trappe

Human Performance Laboratory, Ball State University

Muncie, IN 47306

USA

Phone: + 7652851145

Fax: + 76 52 85 32 38

Email: strappe@bsu.edu