Subscribe to RSS
DOI: 10.1055/s-2004-822378
Formation of Metallo-Polymers and -Macrocycles by Complexation of Alkyl-Linked Di-Terpyridines with Iron(II) Ions
Publication History
Publication Date:
19 May 2004 (online)
![](https://www.thieme-connect.de/media/synthesis/200408/lookinside/thumbnails/10.1055-s-2004-822378-1.jpg)
Abstract
The complexation of bridged di-terpyridine ligands with iron(II) leads to new metallo-supramolecular assemblies. Di-terpyridine ligands were synthesized using nucleophilic substitution of 4′-chloro-2,2′:6′,2′′-terpyridine with different dialcoholate alkyl and dithiolate alkyl nucleophiles. Upon addition of iron(II) chloride the formation of metallo-polymeric structures via metal-to-ligand complexation is observed. The metallo-polymeric assemblies presented here contain low molar mass (cyclo)-alkyl bridged di-terpyridine ligands of which one is achiral and two others are enantiomers. For both cases, characterization using NMR and UV/Vis spectroscopy shows complex formation and indicates the formation of metallo-supramolecular polymers. For the non-polymeric system, formed at room temperature, it could be shown that upon heating exchange takes place and that the thermodynamically favored product is formed. Using column chromatography, the first two major fractions of the mixture could be separated and analyzed. MALDI-TOF mass spectrometry and 1H NMR spectroscopy confirmed the formation of metallo-macrocyclic assemblies. For the chiral system, circular dichroism (CD) experiments showed the formation of an optically active material, with the spectra of the enantiomeric assemblies being mirror-symmetric.
Key words
terpyridines - polymers - iron - macrocycles - supramolecular chemistry
- 1
Rehahn M. Acta Polym. 1998, 49: 201 - 2
Manners I. Science 2001, 294: 1664 - 3
Lehn J.-M. Supramolecular Chemistry Concepts and Perspectives VCH; Weinheim: 1995. - 4
Constable EC. Adv. Inorg. Chem. Radiochem. 1986, 30: 69 - 5
McWhinnie WR.Miller JD. Adv. Inorg. Chem. Radiochem. 1969, 12: 135 - 6
Constable EC. Macromol. Symp. 1995, 8: 503 - 7
Smith CB.Constable EC.Housecroft CE.Kariuki BM. Chem. Commun. 2002, 2068 - 8
Priimov GU.Moore P.Maritim PK.Butalanyi PK.Alcock NW. J. Chem. Soc., Dalton Trans. 2000, 445 - 9
Lohmeijer BGG.Schubert US. J. Polym. Sci., Part A: Polym. Chem. 2003, 41: 1413 - 10
Schubert US.Schmatloch S.Precup AA. Des. Monomers Polym. 2002, 5: 211 - 11
Lohmeijer BGG.Schubert US. Angew. Chem. Int. Ed. 2002, 41: 3825 - 12
Bernhard S.Takada K.Diaz DJ.Abruña HD.Mürner H. J. Am. Chem. Soc. 2001, 123: 10265 - 13
Janini TE.Fattore JL.Mohler DL. J. Organomet. Chem. 1999, 578: 260 - 14
Chan WK.Gong X.Ng WY. Appl. Phys. Lett. 1997, 71: 2919 - 15
Schmelz O.Rehahn M. e-Polymers 2002, 47: - 16
Grosshenny V.Harriman A.Ziessel R. Angew. Chem., Int. Ed. Engl. 1995, 34: 1100 - 17
Newkome GR.Cho TJ.Moorefield CN.Cush R.Russo PS.Godinez LA.Saunders MJ.Mohapatra P. Chem.-Eur. J. 2002, 8: 2946 - 18
Constable EC.Housecroft CE.Smith CB. Inorg. Chem. Commun. 2003, 6: 1011 -
19a
Suhr D.Lotscher D.Stoeckli-Evans H.von Zelewsky A. Inorg. Chim. Acta 2002, 341: 17 -
19b
von Zelewsky A. Coord. Chem. Rev. 1999, 190-192: 811 - 20
Andres PR.Lunkwitz R.Pabst GR.Boehn K.Wouters D.Schmatloch S.Schubert US. Eur. J. Org. Chem. 2003, 3769 - 21
Andres PR.Hofmeier H.Lohmeijer BGG.Schubert US. Synthesis 2003, 2865 - 22 The reaction using ethylene glycol did not lead to the nucleophilic substitution
- 23
Holyer RH.Hubbard CD.Kettle SFA.Wilkins RG. Inorg. Chem. 1966, 5: 622 - 24
Kimura M.Sano M.Muto T.Hanabusa K.Shirai H.Kobayashi N. Macromolecules 1999, 32: 7951 - 25
Heller M.Schubert US. Macromol. Rapid Commun. 2001, 22: 1358 - 26
Constable EC.Thompson AMWC.Tocher DA.Daniels MAM. New J. Chem. 1992, 16: 855