Zusammenfassung
Studienziel: Untersuchung des Effektes von GDF-5 auf Genotyp und Phänotyp humaner mesenchymaler Stammzellen (hMSC). Hypothese: GDF-5 führt zu einer verstärkten Genexpression von Typ-I-Kollagen ohne Anstieg von Knochenmarkergenen oder der alkalischen Phosphataseaktivität. Methode: Um unsere Hypothese zu testen, behandelten wir hMSC mit rmGDF-5. Mittels quantitativer real-time PCR quantifizierten wir die mRNA für Typ-I-Kollagen (Col), Runx2 und Osterix (Osx). Als phänotypischen Knochenmarker maßen wir die alkalische Phosphataseaktivität (ALP). Die statistische Auswertung erfolgte mittels Varianzanalyse und post hoc Tests (p < 0,05). Ergebnisse: Sowohl Col als auch Runx2 zeigten biphasische Veränderungen mit zunächst Expressionszunahme und nachfolgend Down-Regulation. Interessanterweise zeigten die Kontrollen über die Zeit ebenfalls signifikante Schwankungen. Eine Osx-Genexpression ließ sich weder in den behandelten, noch den Kontrollzellen nachweisen und es ergaben sich keine Unterschiede in ALP. Schlussfolgerung: Obwohl die verstärkte Expression von Col und Runx2 auf eine Entwicklung sowohl in Richtung Osteoblast als auch Fibroblast/Chondrozyt hinweisen kann, unterstützen die gleichzeitig ausbleibende Osx-Genexpression und unveränderte ALP die Annahme, dass sich mit rmGDF-5 behandelte hMSC in Genotyp und Phänotyp nicht osteoblastär verändern. Unsere Daten bestätigen Hinweise aus der Literatur, die einen Nutzen von GDF-5 in der Behandlung von Sehnen- und Ligamentverletzungen postulieren. Inwieweit GDF-5 in Kombination mit hMSC für die Behandlung von Verletzungen oder Tissue Engineering Anwendungen genutzt werden kann, muss durch weitere Untersuchungen überprüft werden.
Abstract
Aim: To evaluate the effects of GDF-5 on genotype and phenotype of human mesenchymal stem cells (hMSC). Hypothesis: GDF-5 leads to up-regulation of the Type I-collagen (Col) gene without altering bone marker genes or alkaline phosphatase activity. Methods: To test our hypothesis hMSC were treated with rmGDF-5. Using quantitative real-time PCR we analyzed mRNA for Col, Runx2 and Osterix (Osx). Furthermore, we analyzed alkaline phosphatase activity (ALP) as a phenotypical bone marker. ANOVA and post hoc statistical analyses were used to determine differences among treatments (p < 0.05). Results: HMSC showed a biphasic response in both Col and Runx2 after rmGDF-5. Initial up-regulation was followed by a significant down-regulation below controls. Interestingly, the controls presented with changes for Col and Runx2 over time. There was no Osx expression in either treated hMSC or controls. No significant differences could be detected in ALP. Conclusion: Increased expression of Col and Runx2 might indicate differentiation towards both osteoblast and fibroblast lineage. However, no Osx expression and no change in ALP support the assumption that rmGDF-5 does not lead to an osteoblast phenotype in hMSC. Our in vitro studies confirm a possible therapeutic benefit of GDF-5 in the treatment of tendon and ligament injuries and tissue engineering approaches. Further research is necessary to prove its clinical value.
Schlüsselwörter
GDF-5 - humane mesenchymale Stammzellen - Sehnen- und Ligamentverletzung - quantitative real-time PCR
Key words
GDF-5 - human mesenchymal stem cells - tendon and ligament injury - quantitative real-time PCR
Literatur
1
Massague J, Chen Y G.
Controlling TGF-beta signaling.
Genes Dev.
2000;
14
627-644
2
Francis-West P H, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten F P, Archer C W.
Mechanisms of GDF-5 action during skeletal development.
Development.
1999;
126
1305-1315
3
Storm E E, Huynh T V, Copeland N G, Jenkins N A, Kingsley D M, Lee S J.
Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily.
Nature.
1994;
368
639-643
4
Edwards C J, Francis-West P H.
Bone morphogenetic proteins in the development and healing of synovial joints.
Semin Arthritis Rheum.
2001;
31
33-42
5
Buxton P, Edwards C, Archer C W, Francis-West P.
Growth/differentiation factor-5 (GDF-5) and skeletal development.
J Bone Joint Surg [Am].
2001;
83 (Suppl 1)
S23-S30
6
Cho T J, Gerstenfeld L C, Einhorn T A.
Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing.
J Bone Miner Res.
2002;
17
513-520
7
Mikic B, Battaglia T C, Taylor E A, Clark R T.
The effect of growth/differentiation factor-5 deficiency on femoral composition and mechanical behavior in mice.
Bone.
2002;
30
733-737
8
Clark R T, Johnson T L, Schalet B J, Davis L, Gaschen V, Hunziker E B, Oldberg A, Mikic B.
GDF-5 deficiency in mice leads to disruption of tail tendon form and function.
Connect Tissue Res.
2001;
42
175-186
9
Chhabra A, Tsou D, Clark R T, Gaschen V, Hunziker E B, Mikic B.
GDF-5 deficiency in mice delays Achilles tendon healing.
J Orthop Res.
2003;
21
826-835
10
Tsumaki N, Nakase T, Miyaji T, Kakiuchi M, Kimura T, Ochi T, Yoshikawa H.
Bone morphogenetic protein signals are required for cartilage formation and differently regulate joint development during skeletogenesis.
J Bone Miner Res.
2002;
17
898-906
11
Wolfman N M, Hattersley G, Cox K, Celeste A J, Nelson R, Yamaji N, Dube J L, DiBlasio-Smith E, Nove J, Song J J, Wozney J M, Rosen V.
Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family.
J Clin Invest.
1997;
100
321-330
12
Aspenberg P, Forslund C.
Enhanced tendon healing with GDF 5 and 6.
Acta Orthop Scand.
1999;
70
51-54
13
Forslund C, Aspenberg P.
Tendon healing stimulated by injected CDMP-2.
Med Sci Sports Exerc.
2001;
33
685-687
14
Rickert M, Jung M, Adiyaman M, Richter W, Simank H G.
A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats.
Growth Factors.
2001;
19
115-126
15
Lou J, Tu Y, Ludwig F J, Zhang J, Manske P R.
Effect of bone morphogenetic protein-12 gene transfer on mesenchymal progenitor cells.
Clin Orthop.
1999;
369
333-339
16
Lou J, Tu Y, Burns M, Silva M J, Manske P.
BMP-12 gene transfer augmentation of lacerated tendon repair.
J Orthop Res.
2001;
19
1199-1202
17 AppliedBiosystems .User Bulletin #2: ABI Prism 7700 Sequence Detection System. Applied Biosystems, Foster City, CA; updated 10/2001
18
Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R.
Multilineage potential of adult human mesenchymal stem cells.
Science.
1999;
284
143-147
19
Prockop D J.
Marrow stromal cells as stem cells for nonhematopoietic tissues.
Science.
1997;
276
71-74
20
Centrella M, Horowitz M C, Wozney J M, McCarthy T L.
Transforming growth factor-beta gene family members and bone.
Endocr Rev.
1994;
15
27-39
21
Russell J E, Manske P R.
Collagen synthesis during primate flexor tendon repair in vitro.
J Orthop Res.
1990;
8
13-20
22
Ducy P, Zhang R, Geoffroy V, Ridall A L, Karsenty G.
Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation.
Cell.
1997;
89
747-754
23
Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T.
Cbfa1 is a positive regulatory factor in chondrocyte maturation.
J Biol Chem.
2000;
275
8695-8702
24
Ueta C, Iwamoto M, Kanatani N, Yoshida C, Liu Y, Enomoto-Iwamoto M, Ohmori T, Enomoto H, Nakata K, Takada K, Kurisu K, Komori T.
Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes.
J Cell Biol.
2001;
153
87-100
25
Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng J M, Behringer R R, de Crombrugghe B.
The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.
Cell.
2002;
108
17-29
OA Dr. med. Hannjörg Koch
Klinik für Orthopädie und orthopädische Chirurgie der Ernst-Moritz-Arndt-Universität
Sauerbruchstraße
17487 Greifswald
Phone: 0 38 34/86 72 27
Fax: 0 38 34/86 72 22
Email: hannjoerg.koch@uni-greifswald.de