Der Nuklearmediziner 2004; 27(2): 120-122
DOI: 10.1055/s-2004-822701
© Georg Thieme Verlag Stuttgart · New York

Molekulargenetik und molekulare Diagnostik bei Schilddrüsenerkrankungen

Molecular Genetics and Diagnosis in Thyroidal DisordersK. Miehle1 , R. Paschke1
  • 1Universität Leipzig, Medizinische Klinik und Poliklinik III
Further Information

Publication History

Publication Date:
15 July 2004 (online)

Zusammenfassung

Somatische konstitutiv aktive Mutationen im TSH-Rezeptor-Gen sind in ca. 60 % der autonomen Schilddrüsen-Adenome und in bis zu 45 % der heißen Knoten hyperthyreoter multinodulärer Strumen nachweisbar. TSH-Rezeptor-Keimbahnmutationen wurden in Familien mit autosomal dominanter nicht-autoimmuner Hyperthyreose gefunden. Bei malignen Schilddrüsenerkrankungen ist die molekulare Diagnostik vor allem für den Nachweis von Mutationen im RET-Protoonkogen bei medullärem Schilddrüsenkarzinom etabliert.

Abstract

The reported frequency of constitutively activating TSH-receptor mutations in toxic thyroid nodules averages 60 %. In hot nodules of toxic multinodular goitres somatic constitutively activating TSHR mutations were found in up to 45 %. Constitutively activating germ line mutations in the TSH-receptor gene occur in families with autosomal dominant nonautoimmune hyperthyroidism. Concerning malignant thyroid diseases molecular methods are particularly available for the detection of RET-mutations in medullary thyroid carcinomas.

Literatur

  • 1 Kohn L D, Shimura H, Shimura Y. et al . The thyrotropin receptor.  Vitam Horm. 1995;  50 287-384
  • 2 Nagayama Y, Rapoport B. The thyrotropin receptor 25 years after its discovery: new insight after its molecular cloning.  Mol Endocrinol. 1992;  6 145-156
  • 3 Vassart G, Dumont J E. The thyrotropin receptor and the regulation of thyrocyte function and growth.  Endocr Rev. 1992;  13 596-611
  • 4 Lyons J, Landis C A, Harsh G. et al . Two G protein oncogenes in human endocrine tumors.  Science. 1990;  249 655-659
  • 5 Parma J, Duprez L, Van Sande J. et al . Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas.  Nature. 1993;  365 649-651
  • 6 Paschke R, Ludgate M. The thyrotropin receptor in thyroid diseases.  N Engl J Med. 1997;  337 1675-1681
  • 7 Trulzsch B, Krohn K, Wonerow P. et al . Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis.  J Mol Med. 2001;  78 684-691
  • 8 Holzapfel H P, Fuhrer D, Wonerow P, Weinland G, Scherbaum W A, Paschke R. Identification of constitutively activating somatic thyrotropin receptor mutations in a subset of toxic multinodular goiters.  J Clin Endocrinol Metab. 1997;  82 4229-4233
  • 9 Parma J, Duprez L, Van Sande J. et al . Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas.  J Clin Endocrinol Metab. 1997;  82 2695-2701
  • 10 Duprez L, Parma J, Van Sande J. et al . Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism.  Nat Genet. 1994;  7 396-401
  • 11 Holzapfel H P, Wonerow P, von Petrykowski W, Henschen M, Scherbaum W A, Paschke R. Sporadic congenital hyperthyroidism due to a spontaneous germline mutation in the thyrotropin receptor gene.  J Clin Endocrinol Metab. 1997;  82 3879-3884
  • 12 Clifton-Bligh R J, Gregory J W, Ludgate M. et al . Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance to TSH.  J Clin Endocrinol Metab. 1997;  82 1094-1100
  • 13 Nagashima T, Murakami M, Onigata K. et al . Novel inactivating missense mutations in the thyrotropin receptor gene in Japanese children with resistance to thyrotropin.  Thyroid. 2001;  11 551-559
  • 14 Paschke R. Constitutively activating TSH receptor mutations as the cause of toxic thyroid adenoma, multinodular toxic goiter and autosomal dominant non autoimmune hyperthyroidism.  Exp Clin Endocrinol Diabetes. 1996;  104 (Suppl 4) 129-132
  • 15 Schwab K O, Sohlemann P, Gerlich M. et al . Mutations of the TSH receptor as cause of congenital hyperthyroidism.  Exp Clin Endocrinol Diabetes. 1996;  104 (Suppl 4) 124-128
  • 16 Eng C, Smith D P, Mulligan L M. et al . Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2 B and related sporadic tumours.  Hum Mol Genet. 1994;  3 237-241
  • 17 Bongarzone I, Vigano E, Alberti L. et al . The Glu632-Leu633 deletion in cysteine rich domain of Ret induces constitutive dimerization and alters the processing of the receptor protein.  Oncogene. 1999;  18 4833-4838
  • 18 Huang S C, Koch C A, Vortmeyer A O. et al . Duplication of the mutant RET allele in trisomy 10 or loss of the wild-type allele in multiple endocrine neoplasia type 2-associated pheochromocytomas.  Cancer Res. 2000;  60 6223-6226
  • 19 Berndt I, Reuter M, Saller B. et al . A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2 A.  J Clin Endocrinol Metab. 1998;  83 770-774
  • 20 Niccoli-Sire P, Murat A, Rohmer V. et al . Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype-genotype relationship in a large series of patients.  J Clin Endocrinol Metab. 2001;  86 3746-3753
  • 21 Eng C, Mulligan L M, Smith D P. et al . Low frequency of germline mutations in the RET proto-oncogene in patients with apparently sporadic medullary thyroid carcinoma.  Clin Endocrinol (Oxf). 1995;  43 123-127
  • 22 Modigliani E, Cohen R, Campos J M. et al . Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d'etude des tumeurs a calcitonine.  Clin Endocrinol (Oxf). 1998;  48 265-273
  • 23 Stjernholm M R, Freudenbourg J C, Mooney H S, Kinney F J, Deftos L J. Medullary carcinoma of the thyroid before age 2 years.  J Clin Endocrinol Metab. 1980;  51 252-253
  • 24 Skinner M A, DeBenedetti M K, Moley J F, Norton J A, Wells S A. Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2 A and 2 B.  J Pediatr Surg. 1996;  31 177-181
  • 25 Sozzi G, Bongarzone I, Miozzo M. et al . A t(10;17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary thyroid carcinoma.  Genes Chromosomes Cancer. 1994;  9 244-250
  • 26 Lam K Y, Lo C Y, Leung P S. High prevalence of RET proto-oncogene activation (RET/PTC) in papillary thyroid carcinomas.  Eur J Endocrinol. 2002;  147 741-745
  • 27 Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma.  Nature. 1988;  332 85-87
  • 28 Chandrasekharappa S C, Guru S C, Manickam P. et al . Positional cloning of the gene for multiple endocrine neoplasia-type 1.  Science. 1997;  276 404-407
  • 29 Guru S C, Goldsmith P K, Burns A L. et al . Menin, the product of the MEN1 gene, is a nuclear protein.  Proc Natl Acad Sci USA. 1998;  95 1630-1634
  • 30 Agarwal S K, Guru S C, Heppner C. et al . Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription.  Cell. 1999;  96 143-152
  • 31 Agarwal S K, Kester M B, Debelenko L V. et al . Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states.  Hum Mol Genet. 1997;  6 1169-1175
  • 32 Bassett J H, Forbes S A, Pannett A A. et al . Characterization of mutations in patients with multiple endocrine neoplasia type 1.  Am J Hum Genet. 1998;  62 232-244
  • 33 Mutch M G, Dilley W G, Sanjurjo F. et al . Germline mutations in the multiple endocrine neoplasia type 1 gene: evidence for frequent splicing defects.  Hum Mutat. 1999;  13 175-185
  • 34 Kassem M, Kruse T A, Wong F K, Larsson C, Teh B T. Familial isolated hyperparathyroidism as a variant of multiple endocrine neoplasia type 1 in a large Danish pedigree.  J Clin Endocrinol Metab. 2000;  85 165-167

Prof. Dr. med. R. Paschke

Medizinische Klinik und Poliklinik III · Universität Leipzig

Philipp-Rosenthal-Str. 27

04103 Leipzig

Phone: +49-3 41-9 71 32 00

Fax: +49-3 41-9 71 32 09

Email: pasr@medizin.uni-leipzig.de

    >