Zusammenfassung
Zusammenfassend kann festgestellt werden, dass es sich bei Kardio-CT und Kardio-MR um zwei technisch unterschiedliche Schnittbildverfahren handelt, die in der Kardiologie eine ständig wachsende Bedeutung gewinnen. Die Anwendungsschwerpunkte beider Verfahren unterscheiden sich derzeit trotz der Ähnlichkeit der Abbildung grundsätzlich. Der Schwerpunkt der klinischen Anwendungen des Kardio-CTs konzentriert sich auf die nicht-invasive Darstellung von Koronararterien. Diesbezüglich ist das Kardio-CT dem Kardio-MR aufgrund der höheren Ortsauflösung derzeit überlegen. Der Schwerpunkt klinischer Anwendungen der Kernspintomographie liegt derzeit neben der morphologischen Darstellung des Herzens bei intra- und perikardialen Tumoren, komplexen Vitien und Pathologie der großen Gefäße vor allem in der Beurteilung von Störungen der Ventrikelfunktion (Dobutamin-Stressecho) und der Perfusion (Adenosin) unter Belastung, sowie in zunehmendem Maße in der Beurteilung der Ausdehnung und Lokalisation von Myokarddefekten, wie sie im Rahmen von Infarkten, aber auch von Myokarditiden auftreten können. Bei diesen Anwendungsmöglichkeiten tritt die Kernspintomographie nur mit einem Teil in direkte Konkurrenz zur nuklearkardiologischen Diagnostik. Mit den Vorteilen einer fehlenden Exposition von radioaktiver Strahlung sowie einer höheren Ortsauflösung ersetzt das Kardio-NMR in diesen Anwendungsbereichen allerdings heute in zunehmendem Umfang die nuklearkardiologische Diagnostik des Herzens.
Abstract
In summary, cardiac computed tomography (CT) and cardiac magnetic resonance (MR) are two different technologies with distinct imaging properties that gain increasing importance in clinical cardiology. Even though images may look similar, the areas of application of CT and MR are quite different. Clinical applications of cardiac CT focus on on-invasive imaging of the coronary arteries. In this respect, the higher spatial resolution of cardiac CT constitutes a significant advantage as compared to MR and clinical results are superior. Clinical applications of cardiac MR, next to morphologic imaging of the heart, are most frequently found in the context of intra-and pericardial masses, complex congenital anomalies, and the assessment of left ventricular function (dobutamine) and perfusion (adenosine) under stress. The evaluation of the size and localization of myocardial necrosis, scars, and fibrosis gains increasing importance, for example in the workup of myocardial infarction, but also myocarditis and cardiomyopathies. In this respect, magnetic resonance imaging partly constitutes an alternative to nuclear medicine methods. Due to the lack of ionizing radiation and a relatively high spatial resolution, an increase of MR diagnostic procedures at the expense of nuclear medicine can be expected.
Schlüsselwörter
Kardio-CT - Kardio-NMR - Myokardperfusion - kardiale Bildgebung - koronare Herzerkrankung
Key words
Cardiac CT - cardiac NMR - myocardial perfusion - cardiac imaging - coronary artery disease
Literatur
-
1
Achenbach S, Moshage W, Ropers D, Nossen J, Bachmann K.
Noninvasive, threedimensional visualization of coronary artery bypass grafts by electron beam tomography.
Am J Cardiol.
1997;
79
856-861
-
2
Achenbach S, Moshage W, Ropers D, Nossen J, Daniel W G.
Value of electron-beam computed tomography for the detection of high-grade coronary artery stenoses and occlusions.
N Engl J Med.
1998;
339
1964-1971
-
3
Achenbach S, Ropers D, Regenfus M, Pohle K, Giesler T, Moshage W, Daniel W G.
Noninvasive coronary angiography by magnetic resonance imaging, electron-beam computed tomography, and multislice computed tomography.
Am J Cardiol.
2001;
88
70 E-73 E
-
4
Achenbach S, Giesler T, Ropers D, Ulzheimer S, Derlien H, Schulte C, Wenkel E, Moshage W, Bautz W, Daniel W G, Kalender W A, Baum U.
Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography.
Circulation..
2001;
103
2535-2538
-
5
Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R, Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel W G.
Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation.
Circulation.
2002;
106
1077-1082
-
6
Achenbach S, Schmermund A, Erbel R, Silber S, Haberl R, Moshage W, Daniel W G.
Detection of coronary calcifications by electron beam tomography and multislice spiral CT: clinical relevance.
Z Kardiol.
2003;
92
899-907
-
7
Agatston A S, Janowitz W R, Hildner F J, Zusmer N R, Viamonte M, Detrano R.
Quantification of coronary artery calcium using ultrafast computed tomography.
J Amer Coll Cardiol.
1990;
15
827-832
-
8
Arad Y, Spadaro L A, Goodman K, Newstein D, Guerci A D.
Prediction of coronary events with electron beam computed tomography.
J Am Coll Cardio..
2000;
36
1253-1260
-
9
Baumgart D, Schmermund A, Goerge G, Haude M, Junbo G, Adamzik M, Sehnert C, Altmaier K, Groenemeyer D, Seibel R, Erbel R.
Comparison of electron beam computed tomography with intracoronary ultrasound and coronary angiography for detection of coronary atherosclerosis.
J Am Coll Cardiol.
1997;
30
57-64
-
10
Becker C R, Kleffel T, Crispin A, Knez A, Young J, Schoepf U J, Haberl R, Reiser M F.
Coronary artery calcium measurement: agreement of multirow detector and electron beam CT.
AJR Am J Roentgenol.
2001;
176
1295-1298
-
11
Blankenhorn D H, Stern D.
Coronary arterial calcification, a review.
Amer J Med Sci.
1961;
242
41-49
-
12
Callister T Q, Raggi P, Cooil B, Lippolis N J, Russo D J.
Effect on HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography.
N Engl J Med.
1998;
339
1972-1978
-
13
Detrano R C, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C, Georgiou D, Budoff M, Reed J.
Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography.
J Am Coll Cardiol.
1996;
27
285-290
-
14
Erbel R.
The dawn of a new era - non-invasive coronary imaging (editorial).
Herz.
1996;
21
75-77
-
15 European Guidelines on CVD Prevention. European Society of Cardiologie 2003
-
16
Fayad Z A, Nahar T, Fallon J T, Goldmann M, Aguinaldo J G, Badimon J J, Shinnar M, Chesebro L H, Fuster V.
In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta.
Circulation.
2000;
101
2503-2509
-
17
Ibrahim T, Nekolla S G, Schreiber K, Odaka K, Volz S, Mehilli J, Guthlin M, Delius W, Schwaiger M.
Assessment of coronary flow reserve: comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography.
J Am Coll Cardiol.
2002;
39
864-870
-
18
Kessler W, Achenbach S, Moshage W, Zink D, Kroeker R, Nitz W, Laub G, Bachmann K.
Usefulness of respiratory gated magnetic resonance coronary angiography in assessing narrowings > or = 50 % in diameter in native coronary arteries and in aortocoronary bypass conduits.
Am J Cardiol.
1997;
80
989-993
-
19
Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel W G.
Coronary arteries MR angiography with fast contrast-enhanced three-dimensional breath-hold imaging - initial experience.
Radiology.
1999;
210
566-572
-
20
Kim R J, Wu E, Rafael A, Chen E L, Parker M A, Simonetti O, Klocke F J, Bonow R O, Judd R M.
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction.
N Engl J Med.
2000;
343
1445-1453
-
21
Kim W Y, Danias P G, Stuber M, Flamm S D, Plein S, Nagel E, Langerak S E, Weber O M, Pedersen E M, Schmidt M, Botnar R M, Manning W J.
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345
1863-1869
-
22
Klein C, Nekolla S G, Bengel F M, Momose M, Sammer A, Haas F, Schnackenburg B, Delius W, Mudra H, Wolfram D, Schwaiger M.
Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography.
Circulation.
2002;
105
162-167
-
23
Knez A, Becker C R, Leber A, Ohnesorge B, Becker A, White C, Haberl R, Reiser M F, Steinbeck G.
Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses.
Am J Cardiol.
2001;
88
1191-1194
-
24
Kopp A F, Schroeder S, Kuettner A, Baumbach A, Georg C, Kuzo R, Heuschmid M, Ohnesorge B, Karsch K R, Claussen C D.
Non-invasive coronary angiography with high resolution multidetector-row computed tomography. Results in 102 patients.
Eur Heart J.
2002;
23
1714-1725
-
25
Kuhl H P, Beek A M, van der Weerdt A P, Hofman M B, Visser C A, Lammertsma A A, Heussen N, Visser F C, van Rossum A C.
Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography.
J Am Coll Cardiol.
2003;
41
1341-1348
-
26
Leber A W, Knez A, Becker C, Becker A, White C, Thilo C, Reiser M, Haberl R, Steinbeck G.
Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography.
Heart.
2003;
89
633-639
-
27
Lee V S, Resnick D, Tiu S S, Sanger J J, Nazzaro C A, Israel G M, Simonetti O P.
MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi.
Radiology.
2004;
230
191-197
-
28
Manning W J, Li W, Edelman R R.
A preliminary report comparing magnetic resonance coronary angiography with conventional angiography.
N Engl J Med.
1993;
328
828-832
-
29
Moshage W, Achenbach S, Seese B, Bachmann K, Kirchgeorg M.
Coronary artery stenoses: three-dimensional imaging with eletrocardiographically triggered, contrast agent-enhanced, electron-beam CT.
Radiology.
1995;
196
707-714
-
30
Nagel E, Lehmkuhl H B, Boksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E.
Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography.
Circulation.
1999;
99
763-770
-
31
Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E.
Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease.
Circulation.
2003;
108
432-437
-
32
Nieman K, Oudkerk M, Rensing B J, van Ooijen P, Munne A, van Geuns R J, de Feyter P J.
Coronary angiography with multi-slice computed tomography.
Lancet.
2001;
357
599-603
-
33
Pohost G M, Fuisz A R.
From the microscope to the clinic, MR assessment of atherosclerotic plaque (editoral).
Circulation.
1998;
98
1477-1478
-
34
Pozzoli M M, Fioretti P M, Salustri A, Reijs A E, Roelandt J R.
Exercise echocardiography and technetium-99m MIBI single-photon emission computed tomography in the detection of coronary artery disease.
Am J Cardiol.
1991;
67
350-355
-
35
Raggi P, Callister T Q, Cooil B, He Z X, Lippolis N J, Russo D J, Zelinger A, Mahmarian J J.
Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography.
Circulation.
2000;
101
850-855
-
36
Reddy G, Chernoff D M, Adams J R, Higgins C B.
Coronary artery stenoses: assessment with contrast-enhanced electron-beam CT and axial reconstruction.
Radiology.
1998;
208
167-172
-
37
Regenfus M, Ropers D, Achnebach S, Kessler W, Laub G, Daniel W G, Moshage W.
Noninvasive detection of coronary artery stenosis using contrast-enhanced three-dimensional breath-hold magnetic resonance coronary angiography.
Am J Cardiol.
2001;
88
70 E-73 E
-
38
Rensing B J, Bongaerts A, van Geuns R J, van Ooijen P, Oudkerk M, de Feyter P.
Intravenous coronary angiography by electron beam computed tomography. A clinical evaluation.
Circulation.
1998;
98
2509-2512
-
39
Ropers D, Moshage W, Daniel W G, Jessl J, Gottwik M, Achenbach S.
Visualization of coronary artery anomalies and their course by contrast-enhanced electron beam tomography and three-dimensional reconstruction.
Am J Cardiol.
2001;
87
193-197
-
40
Ropers D, Baum U, Pohle K, Anders K, Ulzheimer S, Ohnesorge B, Schlundt C, Bautz W, Daniel W G, Achenbach S.
Detection of coronary artery stenoses with thin-slice multi-detector row spiral computed tomography and multiplanar reconstruction.
Circulation.
2003;
107
664-666
-
41
Rumberger J A, Simons D B, Fitzpatrick L A, Sheedy P F, Schwartz R S.
Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area.
Circulation.
1995;
92
2157-2162
-
42
Rumberger J A, Brundage B H, Rager D J, Kondos G.
Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons.
Mayo Clin Proc.
1999;
74
243-252
-
43
Sandstede J JW, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D.
Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography.
Am J Roentgenol.
1999;
172
135-139
-
44
Sangiorgi G, Rumberger J A, Severson A, Edwards W D, Gregoire J, Fitzpatrick L A, Schwartz R S.
Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology.
J Am Coll Cardiol.
1998;
31
126-133
-
45
Schmermund A, Rensing B J, Sheedy P F, Bell M R, Rumberger J A.
Intravenous electron-beam computed tomograpic coronary angiography for segmental analysis of coronary artery stenoses.
J Am Coll Cardiol.
1998;
31
1547-1554
-
46
Schmermund A, Denktas A E, Rumberger J A, Christian T F, Sheedy P F, Bailey K R, Schwartz R S.
Independent and incremental value of coronary artery calcium for predicting the extent of angiographic coronary artery disease: comparison with cardiac risk factors and radionuclide perfusion imaging.
J Am Coll Cardiol.
1999;
34
777-786
-
47
Schmermund A, Erbel R, Silber S. MUNICH Registry Study Group .
Multislice Normal Incidence of Coronary Health. Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2,030 persons with no symptoms of coronary artery disease.
Am J Cardiol.
2002;
90
168-173
-
48
Schroeder S, Kopp A F, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen C D, Karsch K R.
Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography.
J Am Coll Cardiol.
2001;
37
1430-1435
-
49
Secci A, Wong N, Tang W, Wang S, Doherty T, Detrano R.
Electron beam computed tomographic coronary calcium as a predictor of coronary events: comparison of two protocols.
Circulation.
1997;
96
1122-1129
-
50
Toussaint L F, LaMuraglia G M, Southern J F, Fuster F, Kantor H L.
Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo.
Circulation.
1996;
94
932-938
-
51
Van Geuns R JM, de Bruin H G, Rensing B JWM, Wielopolski P A, Hulshoff M D, van Ooijen P MA, Oudkerk M, de Feyter P J.
Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique.
Heart.
1999;
82
515-519
-
52
Vliegenthart R, Oudkerk M, Song B, van der Kuip D A, Hofman A, Witteman J C.
Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study.
Eur Heart J.
2002;
23
1596-1603
-
53
Wayhs R, Zelinger A, Raggi P.
High coronary artery calcium scores pose an extremely elevated risk for hard events.
J Am Coll Cardiol.
2002;
39
225-230
-
54
Wagner A, Mahrholdt H, Holly T A, Elliott M D, Regenfus M, Parker M, Klocke F J, Bonow R O, Kim R J, Judd R M.
Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study.
Lancet.
2003;
361
374-379
-
55
Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, Rumberger J, Stanford W, White R, Taubert K.
Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professional from the American Heart Association.
Circulation.
1996;
94
1175-1192
-
56
Wilke N, Jerosch-Herold M, Wang Y, Huang Y, Christensen B V, Stillman A E, Ugurbil K, McDonald K, Wilson R F.
Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging.
Radiology.
1997;
204
373-384
Prof. Dr. med. Dr. med. habil. Werner Moshage,
Chefarzt Medizinische Abteilung · Klinikum Traunstein
Cuno-Niggl-Strasse 3
83278 Traunstein