References
1
Griller D.
Ingold KU.
Acc. Chem. Res.
1976,
9:
13
2a
Gomberg M.
Chem. Rev.
1925,
1:
91
2b
Ballester M.
Pure Appl. Chem.
1967,
15:
123
2c
Laukamp H.
Nauta WT.
MacLean C.
Tetrahedron Lett.
1968,
9:
249
2d
Carilla J.
Fajarí L.
Juliá L.
Riera J.
Viadel L.
Tetrahedron Lett.
1994,
35:
6529
2e
Neumann WP.
Uzick W.
Zarkadis AK.
J. Am. Chem. Soc.
1986,
108:
3762
2f
Neumann WP.
Stapel R.
Chem. Ber.
1986,
119:
2006
2g
Sholle VD.
Rozantsev EG.
Russ. Chem. Rev.
1973,
42:
1011
2h
McBride JM.
Tetrahedron
1974,
30:
2009
3a
Mangini A.
Pedulli GF.
Tiecco M.
Tetrahedron Lett.
1968,
9:
4941
3b
Mangini A.
Pedulli GF.
Tiecco M.
J. Heterocycl. Chem.
1969,
6:
271
4
Tzerpos NI.
Zarkadis AK.
Kreher RP.
Repas L.
Lehnig M.
J. Chem. Soc., Perkin Trans. 2
1995,
755
5
Katritzky A.
Yang B.
Dalal NS.
J. Org. Chem.
1998,
63:
1467
6
Alajarín M.
Vidal A.
Tovar F.
Targets Heterocycl. Syst.
2000,
4:
293 ; and references cited therein
7a
Alajarín M.
Vidal A.
Ortín M.-M.
Tetrahedron Lett.
2003,
44:
3027
7b
Alajarín M.
Vidal A.
Ortín M.-M.
Org. Biomol. Chem.
2003,
1:
4282
7c
Alajarín M.
Vidal A.
Ortín M.-M.
Bautista D.
New J. Chem. in press
For a seminal paper in which the PRE was recognized see:
8a
Fischer H.
J. Am. Chem. Soc.
1986,
108:
3925
8b For the naming of the principle of PRE see: Daikh BE.
Finke RG.
J. Am. Chem. Soc.
1992,
114:
2938
8c For an excellent review on the PRE see: Fischer H.
Chem. Rev.
2001,
101:
3581
8d For examples of PRE in organic synthesis see: Studer A.
Angew. Chem. Int. Ed.
2000,
39:
1108
8e
Wetter C.
Jantos K.
Woithe K.
Studer A.
Org. Lett.
2003,
5:
2899
8f
Studer A.
Chem.-Eur. J.
2001,
7:
1159
8g
Leroi C.
Fenet B.
Couturier J.-L.
Guerret O.
Ciufolini MA.
Org. Lett.
2003,
5:
1079
8h
Allen AD.
Fenwick MF.
Henry-Riyad H.
Tidwell TT.
J. Org. Chem.
2001,
66:
5759
8i
Wetter C.
Studer A.
Chem. Commun.
2004,
174
9
Boivin J.
Fouquet E.
Schiano A.-M.
Zard SZ.
Tetrahedron
1994,
50:
1769
10a
Walkington AJ.
Whiting DA.
Tetrahedron Lett.
1989,
30:
4731
10b
Ahmad-Junan SA.
Walkington AJ.
Whiting DA.
J. Chem. Soc., Perkin Trans. 1
1992,
2313
11
Gutenberger G.
Steckhan E.
Blechert S.
Angew. Chem. Int. Ed.
1998,
37:
660
12
Mikami T.
Harada M.
Narasaka K.
Chem. Lett.
1999,
425
13
Comasseto JV.
Ferreira JTB.
Brandt CA.
Petragnani N.
J. Chem. Res., Synop.
1982,
212
For examples of aza-Wittig reactions between phosphazenes and ketenes see:
14a ref.
[7]
14b
Alajarín M.
Vidal A.
Tovar F.
Ramírez de Arellano MC.
Cossío FP.
Arrieta A.
Lecea B.
J. Org. Chem.
2000,
65:
3633
14c
Alajarín M.
Vidal A.
Ortín M.-M.
Synthesis
2002,
2393 ; and references cited therein
15
Pracejus H.
Wallura G.
J. Prakt. Chem.
1962,
19:
33
16
Taylor EC.
McKillop A.
Hawks GH.
Org. Synth.
1973,
52:
36
17
Typical Procedure: A solution of the corresponding ketenimine 8 (1.5 mmol) in anhyd benzene (100 mL) was heated under nitrogen at reflux temperature and tris(trimethylsilyl)silane (0.56 g, 2.25 mmol) and AIBN (0.098 g, 0.6 mmol) were added. Further additions of tris(trimethylsilyl)silane and AIBN were made as follows: 1) after 4 h since the first addition, tris(trimethylsilyl)silane (0.19 g, 0.75 mmol) and AIBN (0.098 g, 0.6 mmol) and 2) 4 h later, tris(trimethylsilyl)silane (0.37 g, 1.5 mmol) and AIBN (0.098 g, 0.6 mmol). After 16 h since the last addition the solvent was removed under reduced pressure and the crude material was chromatographed on a silica gel column, using hexanes/EtOAc (9:1) as eluent.
1,4-Benzoxazine 9f: Rf = 0.48; yield 27%; colorless prisms (Et2O); mp 177-178 °C. IR (nujol): 2234, 1625, 1258, 1220, 1164, 1117, 1074, 1044, 964, 889, 827, 741, 707 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.23 (s, 3 H), 1.50 (s, 3 H), 3.39 (d, 1 H, J = 13.5 Hz), 4.28 (d, 1 H, J = 13.5 Hz), 6.79 (d, 1 H, J = 8.7 Hz), 7.11 (dd, 1 H, J = 8.7, 2.7 Hz), 7.41 (very broad s, 8 H), 7.61 (d, 1 H, J = 2.7 Hz), 7.91 (broad s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 25.3, 27.6, 37.3 (s), 63.6, 64.2 (s), 116.7, 127.2 (s), 127.4, 127.7 (s), 128.3, 128.5, 128.6, 128.9, 130.0, 131.1, 133.9 (s), 136.4 (s), 137.0 (s), 145.2 (s), 164.9 (s). MS: m/z (relative intensity) = 402 (3) [M+ + 2], 400 (8) [M+], 332 (100). Anal. Calcd for C25H21ClN2O: C, 74.90; H, 5.28; N, 6.99. Found: C, 74.77; H, 5.21; N, 7.11.
1,4-Benzoxazine 10f: Rf = 0.36; yield 55%; colorless prisms (Et2O); mp 143-144 °C. IR (nujol): 2233, 1624, 1600, 1579, 1494, 1299, 1261, 1236, 1198, 1128, 971, 870, 819, 763, 709, 668 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.47 (s, 3 H), 1.51 (s, 3 H), 4.77 (d, 1 H, J = 11.7 Hz), 4.92 (d, 1 H, J = 11.7 Hz), 6.82 (d, 1 H, J = 8.7 Hz), 6.99 (dd, 1 H, J = 8.7, 2.4 Hz), 7.08-7.11 (m, 2 H), 7.15 (d, 1 H, J = 2.4 Hz), 7.16-7.19 (m, 2 H), 7.28-7.35 (m, 6 H). 13C NMR (75 MHz, CDCl3): δ = 27.8, 28.9, 56.8 (s), 65.2, 118.3, 121.8 (s), 123.4, 124.7, 125.1 (s), 128.1, 128.2, 128.4, 128.5, 129.8, 130.6, 132.4 (s), 139.5 (s), 140.2 (s), 142.8 (s), 147.5 (s). MS: m/z (relative intensity) = 402 (2) [M+ + 2], 400 (5) [M+], 332 (100). Anal. Calcd for C25H21ClN2O: C, 74.90; H, 5.28; N, 6.99. Found: C, 74.76; H, 5.18; N, 7.08.
18 Crystallographic data for the structure 10a have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 229317. Copies of the data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (e-mail: deposit@ccdc.cam.ac.uk).
For articles dealing with persistent nitrogen-centered radicals see:
19a
Nakatsuji M.
Miura Y.
Teki Y.
J. Chem. Soc., Perkin Trans. 2
2001,
738
19b
Miura Y.
Momoki M.
Fuchikami T.
Teki Y.
Itoh K.
Mizutani H.
J. Org. Chem.
1996,
61:
4300
19c
Roberts JR.
Ingold KU.
J. Am. Chem. Soc.
1973,
95:
3228
19d
Griller D.
Mendenhall GD.
van Hoof W.
Ingold KU.
J. Am. Chem. Soc.
1974,
96:
6068