Subscribe to RSS
DOI: 10.1055/s-2004-822912
Dendritic EDA-Schiff Bases of the Salen-Type
Publication History
Publication Date:
28 April 2004 (online)
Abstract
Dendronized salicylidene-ethylenediamine (salen) compounds are prepared for the first time through diaza-Cope rearrangement in which the ethano carbons of the ethylenediamine (EDA) are substituted with two types of dendritic wedges: Fréchet-ether and ester-dendrons. The X-ray analysis of a dendritic salen with ester dendrons is presented.
Key words
dendrimers - Schiff bases - diaza-Cope rearrangement - salen ligands - valence isomerisation
- 1
Breinbauer R.Jacobsen EN. Angew. Chem. Int. Ed. 2000, 39: 3604 ; Angew. Chem. 2000, 112, 3750 - 2
Seebach D.Sellner H.Karjalainen JK. Chem.-Eur. J. 2001, 7: 2873 - For Jacobsen catalysts with various substitution motifs of the ethano bridge, see:
-
3a
Zhang W. Ph.D. Thesis University of Illinois; USA: 1991. -
3b
Irie R.Noda K.Ito Y.Matsumoto N. Tetrahedron Lett. 1990, 31: 7345 -
3c
Irie R.Noda K.Ito Y.Katsuki T. Tetrahedron Lett. 1991, 32: 1055 -
3d
Irie R.Ito Y.Katsuki T. Synlett 1991, 265 -
3e
Irie R.Noda K.Ito Y.Matsumoto N.Katsuki T. Tetrahedron: Asymmetry 1991, 2: 481 -
3f
Hosoya N.Irie R.Ito Y.Katsuki T. Synlett 1991, 691 - 4
O’Connor KJ.Wey SJ.Burrows CJ. Tetrahedron Lett. 1992, 33: 1001 - 5
Reddy DR.Thornton ER. J. Chem. Soc., Chem. Commun. 1992, 172 - For early examples of the preparation and use of chiral salen complexes, see:
-
6a
Cesarotti E.Pasini A.Ugo R. J. Chem. Soc., Dalton Trans. 1981, 2147 ; and references cited therein -
6b
Nakajima K.Kojima M.Fujita J. Chem. Lett. 1986, 1483 - 7
Zhang W.Loebach JL.Wilson SR.Jacobsen EN. J. Am. Chem. Soc. 1990, 112: 2801 - 8
Jacobsen EN.Zhang W.Muci AR.Ecker JR.Deng L. J. Am. Chem. Soc. 1991, 113: 7063 - 9
Zhang W.Jacobsen EN. J. Org. Chem. 1991, 56: 2296 -
10a
Newkome GR.Moorefield CN.Vögtle F. Dendrimers and Dendrons Wiley-VCH; Weinheim: 2001. p.49 -
10b
Tomalia DA.Fréchet JMJ. Dendrimers and other Dendritic Polymers John Wiley and Sons; Chichester: 2001. - 11
Tomalia DA.Berry V.Hall M.Hedstand DM. J. Am. Chem. Soc. 1987, 109: 1601 - 12
Feuerbach N.Vögtle F. Top. Curr. Chem. 1998, 197: 1 - 13
Goldschmitt E.Vögtle F. Chem. Ber. 1976, 109: 1 -
14a
Goldschmitt E.Vögtle F. Angew. Chem., Int. Ed. Engl. 1973, 12: 767 ; Angew. Chem. 1973, 85, 824 -
14b
Goldschmitt E.Vögtle F. Angew. Chem., Int. Ed. Engl. 1974, 13: 149 ; Angew. Chem. 1974, 86, 520 -
14c
Goldschmitt E. Ph.D. Thesis Universität Würzburg; Germany: 1975. - 15
Hawker CJ.Fréchet JMJ. J. Am. Chem. Soc. 1990, 112: 7638 - 16
Piancatelli G. Synthesis 1982, 245 - 17
Bo Z.Zhang X.Wang Z.Yang M.Shen J.Li Y. J. Chem. Soc., Perkin Trans. 1 1997, 2931 -
20a For intramolecular N-HºO resonance assisted hydrogen bonding, see:
Gilli P.Bertolasi V.Ferretti V.Gilli G. J. Am. Chem. Soc. 2000, 122: 10405 -
20b For ortho-hydroxy Schiff bases with very short hydrogen bonds, see:
Filarowski A.Koll A.Glowiak T. J. Chem. Soc., Perkin Trans. 2 2002, 835 - 21
Vögtle F.Heim C.Affeld A.Nieger M. Helv. Chim. Acta 1999, 82: 746 - 22
Felder T.Schalley CA. Angew. Chem. Int. Ed. 2003, 42: 2258 ; Angew. Chem. 2003, 115, 2360 -
23a
Moore JS.Xu Z. Macromolecules 1991, 24: 5893 -
23b
Moore JS.Xu Z. Polym. Prepr. (Am. Soc., Div. Polym. Chem.) 1991, 32: 629 -
23c
Moore JS.Xu Z. Acta Polym. 1994, 45: 83 -
23d
Devados C.Bharathi P.Moore JS. J. Am. Chem. Soc. 1996, 118: 9635
References
General Procedure for diaza-Cope Rearrangements: The amount of 0.29 mmol meso-1,2-bis(2-hydroxyphenyl)-ethylenediamine(1) and 0.594 mmol of the specific formyl substituted dendron 2 or 3 are dissolved in ca. 20 mL MeCN and refluxed for approximately 4 h. In the cold, yellow crystals precipitate. Yield 225 mg (92%) for 6 and 245 mg (94%) for 7, respectively.
Compound 6: Yellow solid; mp 209-211 °C. 1H NMR (400 MHz, d
6-acetone): δ = 5.44 (s, 2 H, N-CH
ethylene), 5.74 (s, 8 H, O-CH
2), 7.14 (d, 4 H, 4
J
HH = 1.9 Hz, CH
arom), 7.17 (t, 2 H, 4
J
HH = 2.2 Hz, CH
arom), 7.45-7.49 (m, 20 H, 3
J
HH = 1.4 and 2.2 Hz, CH
phenyl), 7.79-7.82 (m, 3
J
HH = 2.0 Hz, CH
arom), 7.91 (s, 2 H, N=CH). 13C NMR (100.6 MHz, d
6-acetone): δ = 75.3 (O-CH2), 79.2 (CHethylene), 102.8, 106.1, 117.4, 119.2 (CHarom), 121.6 (C
quart,arom C-CN), 128.9, 129.2, 132.2, 133.9 (CHarom), 141.1 (CHarom-CH2), 142.1 (C
quart,arom-Cethylene), 150.9 (Cquart,arom-OH), 153.5 (C
quart,arom-OCH2), 164.8 (C=N). FAB-MS: m/z = 845.5 [M+], 741.5 [M+ - 104], 663.5 [741.5 - C6H6
+], 647.5 [741.5 - C6H6O+], 422.2 [M/2+]. Anal. Calcd for C56H48O6N2: C, 79.6; H, 5.73; N, 3.32. Found: C, 79.07; H, 5.46; N, 3.38;
Compound 7: Yellow crystals; mp 238-240 °C (acetone). 1H NMR (400 MHz, d
6-acetone): δ = 5.31 (s, 2 H, CH
ethylene), 6.83 (m, 2 H, 3
J
HH = 8.4 Hz, 4
J
HH = 1.2 Hz, CH
arom), 6.87 (m, 2 H, 4
J
HH = 1.2 Hz, 3
J
HH = 7.3 Hz, 3
J
HH = 7.6 Hz, CH
arom), 7.24 (t, 2 H, 3
J
HH = 2.1 Hz, CH
arom), 7.31 (m, 2 H, 4
J
HH = 1.6 Hz, 3
J
HH = 7.3 Hz, 3
J
HH = 8.4 Hz, CH
arom), 7.37 (m, 2 H, 3
J
HH = 7.6 Hz, 4
J
HH = 1.6 Hz, CH
arom), 7.41 (d, 2 H, 3
J
HH = 2.1 Hz, CH
arom), 7.58-7.59 (m, 8 H, 4
J
HH = 1.1 Hz, 3
J
HH = 7.4 Hz, 3
J
HH = 7.9 Hz, CH
arom), 7.72 (m, 2 H, 4
J
HH = 1.3 Hz, 3
J
HH = 7.4 Hz, CH
arom), 8.14 (m, 8 H, 4
J
HH = 1.3 Hz, 3
J
HH = 7.9 Hz, CH
arom), 8.59 (s, 2 H, N=CH). 13C NMR (100.6 MHz, d
6-acetone): δ = 79.2 (CHethylene), 116.3, 117.4, 119.6, 120.2 (CHarom), 129.7 (Cquart, arom C-CN), 130.7, 130.8 (CHarom), 143.4 (Cquart, arom C-CN), 152.5 (Cquart, arom C-O), 161.9 (Cquart, arom C-O), 161.9 (Cquart, arom C-OH), 165.2 (C=N), 168.6 (CO2), 133.3 (Cquart, arom C-CO2), 133.6, 134.7 (CHarom). FAB-MS: m/z = 901.2 [M + H+], 450.1 [M/2+]. MALDI-TOF MS: m/z = 940.0 [M + K+], 924.0 [M + Na+], 901.0 [M+], 797.0 [M - C7H4O+]. Anal. Calcd for C56H40O10N2: C, 74.66; H, 4.47; N, 3.11. Found: C, 74.25; H, 4.47; N, 3.20.
X-Ray structure analysis of 7: C56H40N2O10·2C3H6O: yellow crystals, crystal dimension 0.03 × 0.15 × 0.50 mm3; M = 1017.06; triclinic, space group P-1 (No. 2), a = 9.3498 (8), b = 11.7346 (11), c = 12.4850 (13) Å, α = 101.320 (6)°, β = 95.220 (5)°, γ = 96.393 (5)°, V = 1325.8 (2) Å3, Z = 1, µ(MoK
α) = 0.0.89 mm-1, T = 123 (2) K, F(000) = 534. 10418 Reflection up to 2θmax. = 50° were measured on a Nonius KappaCCD diffractometer with MoK
α radiation, 4134 of which were independent and used for all calculations. The structure was solved by direct methods and refined to F2 anisotropically, the H atoms were refined with a riding model. The final quality coefficient wR2 (F2) for all data was 0.2429, with a conventional R(F) = 0.0793 for 321 parameters and 88 restraints.
Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-221830 (9). Copies of the data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambrigde CB2 1EZ, UK; fax: +44 (1223)336033; e-mail: deposit@ccdc.cam.ac.uk].
General Procedure for the Complexation of 7 with Transition Metal Cations M
²+
: The amount of 0.056 mmol of 7 are solved in 3 mL CH2Cl2 and 3 mL of a solution of the corresponding M2+-triflate is added at once. The resulting solution is refluxed for approximately 2 h. In the cold, the M2+-complexes precipitate. The nickel(II)-triflate gives 36.3 mg (68%) of N,N′-disalicylidene-meso-1,2-bis(3,5-benzoyl-oxydiphenyl)ethylenediaminocobalt(II)(8) and cobalt(II)-triflate gives 29.2 mg (55%) of N,N′-disalicylidene-meso-1,2-bis(3,5-benzoyloxydiphenyl)ethylenediaminonickel
(II)(9).
Compound 8: Greyish green powder. MALDI-TOF MS: m/z = 980.0 [M + Na+], 956.9 [M+].
Compound 9: Grey powder. MALDI-TOF MS: m/z = 980.0 [M + Na+], 957.9 [M+], 854.0 [M - C7H4O+].