Subscribe to RSS
DOI: 10.1055/s-2004-822913
An Efficient Protocol for the Liquid-Phase Synthesis of Furanoquinolines and Pyranoquinolines
Publication History
Publication Date:
28 April 2004 (online)
Abstract
A three-step liquid-phase protocol for the synthesis of furanoquinolines and pyranoquinolines is described. The one-pot three-component aza-Diels-Alder reaction of PEG-supported benzaldehyde, anilines and 2,3-dihydrofuran or dihydropyran under TFA gave PEG-supported tetrahydroquinolines, which was assuredly oxidized by DDQ and then cleaved from the support to afford the corresponding furanoquinolines and pyranoquinolines with reasonable yields and purity.
Key words
tetrahydroquinolines - quinolines - liquid-phase synthesis - polyethylene glycol (PEG)
-
1a
Gravert DJ.Janda KD. Chem. Rev. 1997, 97: 489 -
1b
Wentworth P.Janda KD. Chem. Commun. 1999, 1917 -
1c
Toy PH.Tanda KD. Acc. Chem. Res. 2000, 33: 546 -
1d
Sun CM. Comb. Chem. High Throughput Screening 1999, 2: 299 - 2
Nefzi A.Otresh JM.Houghten RA. Chem. Rev. 1997, 97: 449 -
3a
Yeh CM.Tung CL.Sun CM. J. Comb. Chem. 2000, 2: 341 -
3b
Zhao X.Metz WA.Sieber F.Janda KD. Tetrahedron Lett. 1998, 39: 8433 -
3c
Blettner CG.Konig WA.Quhter G.Stenzel W.Schotten T. Synlett 1999, 307 -
3d
Luisa G.Giorgio M.Pietro C. J. Chem. Soc., Perkin Trans. 1 2002, 2504 -
3e
Racker R.Doring K.Reiser O. J. Org. Chem. 2000, 65: 6932 -
3f
Annunziata R.Benaglia M.Cinquini M.Cozzi F. Chem.-Eur. J. 2000, 6: 133 -
3g
Guo HC.Ding KL. Tetrahedron Lett. 2003, 44: 7103 -
4a
Weinreb SM. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. p.401 -
4b
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis Academic; San Diego: 1987. Chap 2. -
4c
Boger DL.Weinreb SM. Hetero Diels-Alder Methodology in Organic Synthesis Academic; San Diego: 1987. Chap 9. -
4d
Qiang LG.Baine NH. J. Org. Chem. 1988, 53: 4218 -
5a
Katritzky AR.Rachwal S.Rachwal B. Tetrahedron 1996, 52: 15031 -
5b
Larock RC.Yang H.Pace P. Tetrahedron Lett. 1998, 39: 1885 -
5c
Padwa A.Brodney MA.Liu B.Satake K.Wu T. J. Org. Chem. 1999, 64: 3595 -
5d
Bunce RA.Herron DM.Johnson LB.Kotturi S. J. Org. Chem. 2001, 66: 2822 -
5e
Zhang W.Jia X.Yang L.Zhao G.Liu Z.-L. Tetrahedron Lett. 2002, 43: 9433 -
5f
Romuald B.Patricia M.Benoit D.Andre T. Tetrahedron 1998, 54: 4125 -
5g
Spanedda MV.Hoang VD.Crousse B.Bonnet-Delpon D.Bégué J.-P. Tetraheron Lett. 2003, 44: 217 -
6a
Alexander SK.Robert WA. Tetrahedron Lett. 1997, 35: 6163 -
6b
Alexander SK.Leon SI.Robert WA. Tetrahedron 1998, 54: 5089 -
6c
Alexander SK.Leon SI.Alex V.Robert WA. Tetrahedron 1998, 54: 7987 -
7a
Shang YJ.Wang YG. Tetrahedron Lett. 2002, 43: 2247 -
7b
Xia M.Wang YG. Tetrahedron Lett. 2002, 43: 7703 -
7c
Lin XF.Zhan J.Wang YG. Tetrahedron Lett. 2003, 44: 4113 -
7d
Wang YG.Zhang J.Lin XF.Ding HF. Synlett 2003, 1467
References
Typical Spectral Data. For compound 4a: IR (KBr): 3361, 1702 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.67 (m, 1 H), 2.01 (m, 1 H), 2.46 (m, 1 H), 3.85 (m, 2 H), 3.93 (s, 3 H), 4.04 (m, 1 H), 4.60 (d, J = 5.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 6.84 (t, J = 7.3 Hz, 1 H), 7.15 (t, J = 7.0 Hz, 1 H), 7.41 (d, J = 6.6 Hz, 1 H), 7.53 (d, J = 8.4 Hz, 2 H), 8.06 (d, J = 8.4 Hz, 2 H). MS (EI): m/z = 309 [M+]. HRMS: m/z [M + H]+ calcd for C19H19NO3: 310.1443; found: 310.1505. For compound 4a′: IR (KBr): 3370, 1713 cm-1. 1H NMR (500 MHz, CDCl3): δ = 1.46 (m, 1 H), 2.15 (m, 1 H), 2.80 (m, 1 H), 3.72 (m, 2 H), 3.93 (s, 3 H), 4.76 (d, J = 3.0 Hz, 1 H), 5.28 (d, J = 7.8 Hz, 1 H), 6.62 (d, J = 7.9 Hz, 1 H), 6.90 (t, J = 7.2 Hz, 1 H), 7.12 (t, J = 7.2 Hz, 1 H), 7.36 (d, J = 7.0 Hz, 1 H), 7.52 (d, J = 8.3 Hz, 2 H), 8.05 (d, J = 8.3 Hz, 2 H). MS (EI): m/z = 309 [M+]. HRMS: m/z [M + H]+ calcd for C19H19NO3: 310.1443; found: 310.1486.
9Typical Procedure for the Synthesis of 6a: To a solution of PEG-bound aldehyde (0.5 mmol) and aniline (5 mmol) in TFA-CH3CN (1:50, 6 mL) was added 2,3-dihydrofuran (10 mmol). The mixture was stirred at r.t. for 12 h. The resulting PEG-bound cycloadduct 3a was crystallized from i-PrOH (30 mL) and was separated by filtration and washing. A solution of 3a and DDQ (2 mmol) in CH2Cl2 (5 mL) was stirred at r.t. for 24 h. Upon completion of the reaction, the PEG-bound furanquinoline 5a was precipitated in i-PrOH (30 mL) and was separated by filtration and washed. The resulting 5a was dissolved in 0.1 N MeONa-MeOH and stirred at r.t. for 6 h to cleave the product from the PEG support. The detached PEG-OH was precipitated by cold Et2O and filtered. The combined filtrate was evaporated to offer crude product. Pure 6a for structure assay was obtained by flash-column chromatography (EtOAc-n-hexane, 1:5). All the compounds listed in the Table [2] gave satisfactory IR, 1H NMR, MS and HRMS data. For compound 6a these data are as follows: IR (KBr): 1719 cm-1. 1H NMR (500 MHz, CDCl3): δ = 3.61 (t, J = 8.9 Hz, 2 H), 3.97 (s, 3 H), 4.95 (t, J = 8.9 Hz, 2 H), 7.53 (m, 1 H), 7.72 (m, 1 H), 8.01 (m, 3 H), 8.20 (m, 3 H). MS (EI): m/z = 304 [M - H]+. HRMS: m/z [M + H]+ calcd for C19H19NO3: 306.1130; found: 306.1185.