References
For oxidative radical cyclizations from anions, see:
1a
Dalko PI.
Tetrahedron
1995,
51:
7579
1b
Iqbal J.
Bhatia B.
Nayyar NK.
Chem. Rev.
1994,
94:
519
2a
Jahn U.
Chem. Commun.
2001,
1600
2b
Jahn U.
Müller M.
Aussieker S.
J. Am. Chem. Soc.
2000,
122:
5212
3 See for instance: Elliott MC.
J. Chem. Soc., Perkin Trans. 1
2002,
2301 ; and earlier reviews in this series
Reviews:
4a
Balme G.
Bouyssi D.
Lomberget T.
Monteiro N.
Synthesis
2003,
2115
4b
Balme G.
Bossharth E.
Monteiro N.
Eur. J. Org. Chem.
2003,
4101
5a
Durand AC.
Rodriguez J.
Dulcere JP.
Synlett
2000,
731
5b
Durand A.-C.
Dumez E.
Rodriguez J.
Dulcere J.-P.
Chem. Commun.
1999,
2437
6 On prolonged heating of the nitronates 3
-, only some decomposition was observed.
For a few radical cyclizations of α-nitro radicals to carbocycles, see:
7a
Arai N.
Narasaka K.
Bull. Chem. Soc. Jpn.
1997,
70:
2525 ; and cited references
7b
Bowman WR.
Brown DS.
Burns CA.
Crosby D.
J. Chem. Soc., Perkin Trans. 1
1994,
2083
7c
Bowman WR.
Brown DS.
Burns CA.
Crosby D.
J. Chem. Soc., Perkin Trans. 1
1993,
2099
7d
Kende AS.
Koch K.
Tetrahedron Lett.
1986,
27:
6051
8 For the addition of inorganic oxygen-centered radicals to alkynes, see: Wille U.
Jargstorff C.
J. Chem. Soc., Perkin Trans. 1
2002,
1036
9 Review on conjugate additions to nitroalkenes: Berner OM.
Tedeschi L.
Enders D.
Eur. J. Org. Chem.
2002,
1877
10a
Jiao X.-D.
Espenson JH.
Inorg. Chem.
2000,
39:
1549
10b
Schmidt SP.
Basolo F.
Trogler WC.
Inorg. Chim. Acta
1987,
131:
181
10c
Freier RK.
Aqueous Solutions Data for Inorganic and Organic Compounds
Vol. 1:
de Gruyter;
Berlin, New York:
1976.
10d The presented values can only serve as a rough guideline, since our experimental conditions are completely different from those of the electrochemical measurements.
11 Commercial anhydrous CuCl2 was heated to 130 °C for 48 h under high vacuum to remove traces of H2O.
12
General Procedure: At -78 °C under N2, 1.5 mmol of n-BuLi (1,6 M solution in hexane) was added via syringe to a stirred solution of allylic alcohols 2a-e (1.5 mmol) in dry DME (10 mL). After 15 min, a solution of nitroalkene 1a or b (1 mmol) in dry DME (1 mL) was added. The reaction mixture was warmed slowly from -50 to -40 °C and maintained at this temperature until completed by TLC. After changing to an ice bath, 471 mg (3.5 mmol) of anhyd CuCl2 was added in one portion with vigorous stirring. After 30 min, the reaction was quenched with a sat. solution of NH4Cl (1 mL). The inhomogeneous green-brown solution was diluted with Et2O (20 mL) and filtered through a silica gel pad. The solution was concentrated to 5 mL, silica gel (2 g) was added and the remaining solvent was removed under vacuum. The thus pre-adsorbed crude product was purified by silica gel flash column chromatography with hexane/EtOAc (gradient: 40:1 to 1:1).
13 Selected spectral data: Compound 5aa: IR (film): 3070, 3049, 3033, 3016, 2978, 2970, 2958, 1549, 1381, 1098, 1072, 742, 701 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.37-7.27 (m, 5 H, Ph), 5.49 (d, J = 3.1 Hz, 1 H, CHPh), 5.01 (dd, J = 7.4, 3.1 Hz, 1 H, CHNO2), 4.44 (t, J = 8.4 Hz, 1 H, OCH2), 4.05 (dd, J = 10.3, 8.7 Hz, 1 H, OCH2), 3.60 (dd, J = 11.3, 7.4 Hz, 1 H, CH2Cl), 3.50 (dd, J = 11.3, 8.1 Hz, 1 H, CH2Cl), 3.04 (d quint, J = 10.3, 7.5 Hz, 1 H, CHCH2Cl). 13C NMR (100 MHz, CDCl3): δ = 138.4 (s, Ph), 128.8 (d, Ph), 128.7 (d, p-Ph), 125.2 (d, Ph), 93.2 (d, CHNO2), 84.9 (d, CHPh), 71.2 (t, CH2O), 45.6 (d, CHCH2Cl), 39.3 (t, CH2Cl). MS (CI): m/z (%) = 278/276 (7/22), 261/259 (45/100) [M + NH4]+, 225 (38), 208 (25), 195 (7), 145 (18). Compound 6aa: mp 68 °C. 1H NMR (400 MHz, CDCl3): δ = 7.30-7.25 (m, 5 H, Ph), 5.19 (dd, J = 6.2, 2.9 Hz, 1 H, CHNO2), 5.12 (d, J = 6.3 Hz, 1 H, CHPh), 4.53 (dd, J = 8.9, 8.1 Hz, 1 H, OCH2), 3.72 (dd, J = 9.0, 7.2 Hz, 1 H, OCH2), 3.63 (dd, J = 8.1, 6.0 Hz, 1 H, CH2Cl), 3.52 (m, 2 H, CH2Cl, CHCH2Cl). 13C NMR (100 MHz, CDCl3): δ = 133.8 (s, Ph), 128.8 (d, Ph), 128.3 (d, Ph), 125.9 (d, Ph), 92.8 (d, CHNO2), 83.7 (d, CHPh), 70.1 (t, CH2O), 46.3 (d, CHCH2Cl), 43.0 (t, CH2Cl). MS (CI): m/z (%) = 278/276 (5/15) [M + NH3 + NH4]+, 261/259 (30/100) [M + NH4]+, 225 (30), 195 (22). Anal. Calcd for C11H12ClNO3 (241.7): C, 54.67; H, 5.00; N, 5.80. Found: C, 54.84; H, 4.91; N, 5.65. Compound 5ab: mp 110 °C. IR (KBr): 3089, 3064, 3031, 3019, 2995, 2979, 2905, 1548, 1378, 1137, 1103, 1073, 724, 699 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.39-7.27 (m, 5 H, Ph), 5.58 (br s, 1 H, CHPh), 4.97 (dd, J = 6.1, 1.2 Hz, 1 H, CHNO2), 4.49 (t, J = 8.2 Hz, 1 H, CH2O), 4.45 (dd, J = 11.2, 8.3 Hz, 1 H, CH2O), 2.85 (ddd, J = 11.3, 7.8, 6.2 Hz, 1 H, CHCCl), 1.62 (s, 3 H, CH3), 1.60 (s, 3 H, CH3). 13C NMR (100 MHz, CDCl3): δ = 139.4 (s, Ph), 128.9 (d, Ph), 128.5 (d, p-Ph), 125.1 (d, Ph), 92.2 (d, CHNO2), 85.1 (d, CHPh), 69.1 (t, CH2O), 65.7 (s, CCl), 55.3 (d, CHCCl), 32.2 (q, CH3), 30.3 (q, CH3). MS (CI): m/z (%) = 306/304 (3/10) [M + NH3 + NH4]+, 289/287 (24/100) [M + NH4]+, 271 (10), 254 (20), 237 (23), 220 (23), 202 (19), 145 (7). Anal. Calcd for C13H16ClNO3 (269.7): C, 57.89; H, 5.98; N, 5.19. Found: C, 58.19; H, 6.12; N, 4.93. Compound 5bb: IR (film): 2972, 2935, 2897, 1552, 1375, 1131, 1101, 1057, 779 cm-1. 1H NMR (400 MHz, CDCl3): δ = 4.81 (dd, J = 6.4, 1.6 Hz, 1 H, CHNO2), 4.39 (dt, J = 7.0, 1.4 Hz, 1 H, CHEt), 4.24 (dd, J = 11.2, 8.4 Hz, 1 H, CH2O), 4.20 (dd, J = 8.2, 7.4 Hz, 1 H, CH2O), 2.80 (dt, J = 11.3, 7.1 Hz, 1 H, CHCCl), 1.64 (s, 3 H, CH3), 1.61 (s, 3 H, CH3), 1.59 (m, 1 H, CH2CH3), 1.49 (sext, J = 7.2 Hz, 1 H, CH
2CH3), 0.95 (t, J = 7.4 Hz, 3 H, CH
3CH2). 13C NMR (100 MHz, CDCl3): δ = 89.6 (d, CHNO2), 85.7 (d, CHEt), 68.2 (t, CH2O), 65.8 (s, CCl), 56.8 (d, CHCCl), 31.8 (q, CH3CCl), 30.6 (q, CH3CCl), 28.4 (t, CH3
CH2), 9.7 (q, CH3CH2). MS (CI): m/z (%) = 239 (1) [M + NH4]+, 203 (18), 189 (10), 172 (10), 156 (16), 139 (100). Anal. Calcd for C9H16ClNO3 (221.7): C, 48.76; H, 7.27; N, 6.32. Found: C, 48.81; H, 7.27; N, 6.09.
14 Configuration determined by NOE difference spectroscopy.
15 The relative configuration was proved by X-ray crystallography.
16a
Beckwith ALJ.
Schiesser CH.
Tetrahedron
1985,
41:
3925
16b
Spellmeyer DC.
Houk KN.
J. Org. Chem.
1987,
52:
959
17
Curran DP.
Porter NA.
Giese B.
Stereochemistry of Radical Reactions
VCH;
Weinheim:
1996.
18a
Kochi JK. In
Free Radicals
Vol. 1:
Kochi JK.
Wiley;
New York:
1973.
p.591-683
18b
Barton DHR.
Jacob M.
Peralez E.
Tetrahedron Lett.
1999,
40:
9201
19 In analogy to: Burke SD.
Voight EA.
Org. Lett.
2001,
3:
237
20a In analogy to: Rozners E.
Katkevica D.
Bizdena E.
Strömberg R.
J. Am. Chem. Soc.
2003,
125:
12125
20b The crude amine was protected as usual with Boc2O/Et3N.