Semin Vasc Med 2004; 4(1): 5-11
DOI: 10.1055/s-2004-822993
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Low-Density Lipoprotein Receptor-Its Structure, Function, and Mutations

Joep C. Defesche1
  • 1Department of Vascular Medicine, Academic Medical Center at the University of Amsterdam, The Netherlands.
Further Information

Publication History

Publication Date:
22 March 2004 (online)

Uptake of cholesterol, mediated by the low-density lipoprotein (LDL)-receptor, plays a crucial role in lipoprotein metabolism. The LDL-receptor is responsible for the binding and subsequent cellular uptake of apolipoprotein B- and E-containing lipoproteins. To accomplish this, the receptor has to be transported from the site of synthesis, the membranes of the rough endoplasmatic reticulum (ER), through the Golgi apparatus, to its position on the surface of the cellular membrane. The translation of LDL-receptor messenger RNA into the polypeptide chain for the receptor protein takes place on the surface-bound ribosomes of the rough ER. Immature O-linked carbohydrate chains are attached to this integral precursor membrane protein. The molecular weight of the receptor at this stage is 120.000 d. The precursor-protein is transported from the rough ER to the Golgi apparatus, where the O-linked sugar chains are elongated until their final size is reached. The molecular weight has then increased to 160.000 d. The mature LDL-receptor is subsequently guided to the “coated pits” on the cell surface. These specialized areas of the cell membrane are rich in clathrin and interact with the LDL-receptor protein. Only here can the LDL-receptor bind LDL-particles. Within 3 to 5 minutes of its formation, the LDL-particle-receptor complex is internalized through endocytosis and is further metabolized through the receptor-mediated endocytosis pathway. Mutations in the gene coding for the LDL-receptor can interfere to a varying extent with all the different stages of the posttranslational processing, binding, uptake, and subsequent dissociation of the LDL-particle-LDL-receptor complex, but invariably the mutations lead to familial hypercholesterolemia. Thus, mutations in the LDL-receptor gene give rise to a substantially varying clinical expression of familial hypercholesterolemia.

REFERENCES

  • 1 Fagge C H. General xantheiasma or ritiligoldae. Transactions of the Pathological Society, London 1837 24: 242-250
  • 2 Müller C. Xanthomata, hypercholesterolemia, angina pectoris.  Acta Med Scand. 1938;  89 75-84
  • 3 Wilkinson C F, Hand E A, Fliegelman M T. Essential familial hypercholesterolemia.  Ann Intern Med. 1948;  29 671-676
  • 4 Khachadurian A K. The inheritance of essential familial hypercholesterolemia.  Am J Med. 1964;  37 402-407
  • 5 Goldstein J L, Brown M S. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl Coenzyme A reductase activity with overproduction of cholesterol.  Proc Natl Acad Sci USA. 1973;  70 2804-2809
  • 6 Brown M S, Goldstein J L. Expression of the familial hypercholesterolemia gene in heterozygotes: mechanism for a dominant disorder in man.  Science. 1974;  185 61-63
  • 7 Anderson R GW, Goldstein J L, Brown M S. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote.  Proc Natl Acad Sci USA. 1976;  73 2434-2438
  • 8 Brown M S, Goldstein J L. Receptor-mediated pathway for cholesterol homeostasis.  Science. 1986;  232 34-47
  • 9 Südhoff T C, Goldstein J L, Brown M S, Russell D W. The LDL-receptor gene. A mosaic of exons shared with different proteins.  Science. 1985;  228 815-822
  • 10 Esser V, Limbird L E, Brown M D, Goldstein J L, Russell D W. Mutational analysis of the ligand binding domain of the low-density lipoprotein receptor.  J Biol Chem. 1988;  263 13282-13290
  • 11 Fass D, Blacklow S, Kim P S, Berger J M. Molecular basis of familial hypercholesterolemia from structure of LDL-receptor module.  Nature. 1997;  388 691-693
  • 12 North C, Blacklow S C. Structural independence of ligand-binding modules five and six of the LDL-receptor.  Biochemistry. 1999;  38 3926-3935
  • 13 Davis C G, Goldstein J L, Südhoff T C, Anderson R GW, Russell D W, Brown M S. Growth factor homology region in LDL receptor mediates acid-dependent dissociation and receptor recycling.  Nature. 1987;  326 760-764
  • 14 Davis C G, Elhammer A, Russell D W et al.. Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts.  J Biol Chem. 1986;  261 2828-2038
  • 15 Kozarsky K, Kingsley D, Krieger M. Use of a mutant cell line to study the kinetics and function of the O-linked glycosylation of low-density lipoprotein receptors.  Proc Natl Acad Sci USA. 1988;  85 4335-4339
  • 16 Lehrman M A, Schneider W J, Südhof T, Brown M S, Goldstein J L, Russell D W. Mutations in LDL-receptor Alu-Alu recombinations delete exons encoding transmembrane and cytoplasmic domains.  Science. 1985;  227 140-146
  • 17 Lehrman M A, Russell D W, Goldstein J L, Brown M S. Alu-Alu recombination deletes splice acceptor sites and produces secreted LDL receptor in a subject with FH.  J Biol Chem. 1987;  262 3354-3361
  • 18 Davis C G, Van Driel I R, Russell D W, Brown M S, Goldstein J L. The LDL-receptor: identification of aminoacids in cytoplasmic domain required for rapid endocytosis.  J Biol Chem. 1987;  262 4075-4079
  • 19 Matter K, Yamamoto E M, Mellman I. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells.  J Cell Biol. 1994;  126 991-1004
  • 20 Anderson R GW, Brown M S, Goldstein J L. Biosynthesis of the N- and O-linked oligosaccharides of the low-density lipoprotein receptor.  J Biol Chem. 1983;  258 15261-15273
  • 21 Goldstein J L, Brown M S, Anderson R GW, Russell D W, Schneider W J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system.  Annu Rev Cell Biol. 1985;  1 1-39
  • 22 Lindgren V, Luskey K L, Russell D W, Francke U. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes.  Proc Natl Acad Sci USA. 1985;  82 8567-8571
  • 23 Südhoff T C, Van der Westhuyzen D R, Goldstein J L, Brown M S, Russell D W. Three direct repeats and a TATA-like sequence are required for regulated expression of the human LDL-receptor gene.  J Biol Chem. 1987;  262 10773-10779
  • 24 Südhoff T C, Russell D W, Brown M S, Goldstein J L. 42 bp element from LDL receptor gene confers end-product repression by sterols when inserted into viral TK promoter.  Cell. 1987;  48 1061-1069
  • 25 Goldstein J L, Brown M S. Regulation of the mevalonate pathway.  Nature. 1990;  343 425-430
  • 26 Rajavashisth T B, Taylor A K, Andalibi A, Svenson K L, Lusis A L. Identification of a zinc finger protein that binds to the sterol regulatory element.  Science. 1989;  245 640-643
  • 27 Russell D W, Schneider J W, Yamamoto T, Luskey K L, Brown M S, Goldstein J L. Domain map of the LDL-receptor: sequence homology with the epidermal growth factor precursor.  Cell. 1984;  37 577-585
  • 28 Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules.  Cell. 1985;  41 657-663
  • 29 Patthy L. Intron-dependent evolution; preferred types of exons and introns.  FEBS Lett. 1987;  214 1-7
  • 30 Hobbs H H, Brown M S, Goldstein J L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.  Hum Mutat. 1992;  1 445-466
  • 31 Koivisto U M, Hubbard A L, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL-receptor.  Cell. 2001;  105 575-585
  • 32 Schneider W J, Beisiegel U, Goldstein J L, Brown M S. Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164.000 molecular weight.  J Biol Chem. 1982;  257 2664-2673
  • 33 Fouchier S W, Defesche J C, Umans-Eckenhausen M AW, Kastelein J JP. The molecular basis of familial hypercholesterolemia in the Netherlands.  Hum Genet. 2001;  109 602-615
  • 34 LDL-Receptor Database .Available at: http://www.ucl.ac.uk/fh. Accessed December 10, 2003
  • 35 LDL-Receptor Database .Available at: http://www.jojogenetics.nl
  • 36 LDL-Receptor Database .Available at: http://www.umd.necker.fr
  • 37 Defesche J C, Pricker K L, Hayden M R, van der Ende B E, Kastelein J J. Familial defective apolipoprotein B-100 is clinically indistinguishable from familial hypercholesterolemia.  Arch Intern Med. 1993;  153 2349-2356
  • 38 Boren J, Ekstrom U, Agren B, Nilsson-Ehle P, Innerarity T L. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100.  J Biol Chem. 2001;  276 9214-9218
  • 39 Wiegman A, Rodenburg J, De Jongh S et al.. Family history and cardiovascular risk in familial hypercholesterolemia: data in more than 1000 children.  Circulation. 2003;  107 1473-1478
  • 40 Abifadel M, Varret M, Rabes J P et al.. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.  Nat Genet. 2003;  34 154-156
  • 41 Jeenah M, September W, Graadt van Roggen F et al.. Influence of specific mutations at the LDL-receptor gene locus on the response to simvastatin therapy in Afrikaner patients with heterozygous familial hypercholesterolemia.  Atherosclerosis. 1993;  98 51-58
  • 42 Koivisto P VI, Koivisto U M, Kovanen P T, Gylling H, Miettinen T A, Kontula T. Deletion of exon 15 of the LDL receptor gene is associated with a mild form of familial hypercholesterolemia FHEspoo .  Arterioscler Thromb. 1993;  13 1680-1688
  • 43 Gudnason V, Day I NM, Humphries S E. Effect on plasma lipid levels of different classes of mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia.  Arterioscler Thromb. 1994;  14 1717-1722
  • 44 Sun X M, Patel D D, Bhatnagar D et al.. Characterization of a splice-site mutation in the gene for the LDL-receptor associated with an unpredictably severe clinical phenotype in English patients with heterozygous FH.  Arterioscler Thromb Vasc Biol. 1995;  15 219-227
  • 45 Vohl M C, Gaudet D, Moorjani S et al.. Comparison of the effect of low-density lipoprotein receptor class mutations on coronary heart disease among French-Canadian patients heterozygous for familial hypercholesterolaemia.  Eur J Clin Invest. 1997;  27 366-373
  • 46 Sijbrands E JG, Lombardi M P, Westendorp R GJ et al.. Similar response to simvastatin in patients heterozygous for familial hypercholesterolemia with mRNA negative and mRNA positive mutations.  Atherosclerosis. 1998;  136 247-254
  • 47 Graham C A, McClean E, Ward A J et al.. Mutation screening and genotype: phenotype correlation in familial hypercholesterolaemia.  Atherosclerosis. 1999;  147 309-316
  • 48 Gaudet D, Vohl M C, Couture P et al.. Contribution of receptor negative versus receptor defective mutations in the LDL-receptor gene to angiographically assessed coronary artery disease among young (25-49 years) versus middle-aged (50-64 years) men.  Atherosclerosis. 1999;  143 153-161
  • 49 Umans-Eckenhausen M AW, Sijbrands E JG, Kastelein J JP, Defesche J C. Low-Density Lipoprotein-receptor gene mutations and cardiovascular risk in a large genetic cascade screening population.  Circulation. 2002;  106 3031-3036
  • 50 Jansen A CM, Van Wissen S, Defesche J C, Kastelein J JP. Phenotypic variability in familial hypercholesterolemia: an update.  Curr Opin Lipidol. 2002;  13 165-171
  • 51 Sijbrands E JG, Westendorp R GJ, Defesche J C et al.. Mortality over two centuries in a large pedigree with familial hypercholesterolaemia: family tree mortality study.  BMJ. 2001;  322 1019-1022
  • 52 de Sauvage Nolting P R, Defesche J C, Buirma R J, Hutten B A, Lansberg P J, Kastelein J J. Prevalence and significance of cardiovascular risk factors in a large cohort of patients with familial hypercholesterolemia.  J Intern Med. 2003;  253 161-168

 Dr.
J. C Defesche

Department of Vascular Medicine, Academic Medical Center

Rm. G1-112B, P.O. Box 22 660

NL-1100 DD Amsterdam, The Netherlands

Email: j.defesche@amc.uva.nl

    >