References
1a
Heathcock CH. In
Asymmetric Synthesis
Part B, Vol. 3:
Morrison JD.
Academic Press;
New York:
1984.
Chap. 2.
1b
Alcaide B.
Almendros P.
Eur. J. Org. Chem.
2002,
1595
1c
Machajewski TD.
Wong CH.
Angew. Chem. Int. Ed.
2000,
39:
1352
1d
Denmark SE.
Stavenger RA.
Acc. Chem. Res.
2000,
33:
432
1e
Nelson SG.
Tetrahedron: Asymmetry
1998,
9:
357
1f
Shibasaki M.
Sasai H.
Arai T.
Iida T.
Pure Appl. Chem.
1998,
70:
1027
2
Heathcock CH. In
Comprehensive Organic Synthesis
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
Chap. 1.5.
3a
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
6798
3b
Denmark SE.
Ghosh SK.
Angew. Chem. Int. Ed.
2001,
40:
4759
3c
Han Z.
Yorimitsu H.
Shinokubo K.
Oshima K.
Tetrahedron Lett.
2000,
41:
4415
3d
Mahrwald R.
Costisella B.
Gündogan B.
Synthesis
1998,
262
3e
Heathcock CH.
Buse CT.
Kleschick WA.
Pirrung MC.
Sohn JE.
Lampe J.
J. Org. Chem.
1980,
45:
1066
4a Powell JB, Weider PR, Knifton JF, Allen KD, Slaugh LH, and Arhancet JP. inventors; U.S. Patent 6,660,892.
4b Lee BN, Yang DJ, and Byun YH. inventors; U.S. Patent 6,348,611.
4c
Weber R.
Englert U.
Ganter B.
Keim W.
Möthrath M.
Chem. Commun.
2000,
1419
Recent reports on carbonylation reaction of epoxides. Carbonylative ring expansion, see:
5a
Schmidt JAR.
Mahadevan V.
Getzler YDYL.
Coates GW.
Org. Lett.
2004,
6:
373
5b
Mahadevan V.
Getzler YDYL.
Coates GW.
Angew. Chem. Int. Ed.
2002,
41:
2781
5c
Lee JT.
Thomas PJ.
Alper HJ.
J. Org. Chem.
2001,
66:
5424
5d Hydroesterification, see: Hinterding K.
Jacobsen EN.
J. Org. Chem.
1999,
64:
2164
5e Silylamidation, see: Goodman SN.
Jacobsen EN.
Angew. Chem. Int. Ed.
2002,
41:
4703
5f Alternating co-polymerization, see: Allmendinger M.
Eberhardt R.
Luinstra G.
Rieger B.
J. Am. Chem. Soc.
2002,
124:
5646
5g
Takeuchi D.
Sakaguchi Y.
Osakada K.
J. Polym. Sci., Part A: Polym. Chem.
2002,
40:
4530
6a
Chatani N.
Murai S.
Synlett
1996,
414
6b
Fukumoto Y.
Chatani N.
Murai S.
J. Org. Chem.
1993,
58:
4187
7
Roos L.
Goetz RW.
Orchin M.
J. Org. Chem.
1965,
30:
3203
8a
Fernández E.
Castillón S.
Tetrahedron Lett.
1994,
35:
2361
8b
Stille JK.
Su H.
Brechot P.
Parrinello G.
Hegedus LS.
Organometallics
1991,
10:
1183
8c
Parrinello G.
Stille JK.
J. Am. Chem. Soc.
1987,
109:
7122
9 A typical procedure is as follows: A mixture of cyclohexene oxide (0.50 mL, 5.0 mmol), Co2 (CO)8 (43 mg, 0.125 mmol) and 5 (98 mg, 0.25 mmol) in trimethyl orthoformate (10 mL) was placed in a 20 mL Schlenk tube and degassed by freeze-thaw cycles. Then, the solution was transferred into a 50 mL autoclave. After carbon monoxide (40 atm) and hydrogen (40 atm) were pressurized, the resulting mixture was stirred at 90 °C for 21 h. The reaction mixture was cooled down to the ambient temperature, and the carbon monoxide and hydrogen pressure were slowly released. The volatile materials were evaporated and the resulting crude residue was treated with MeOH (10 mL) under refluxing overnight. The solvent was removed off by evaporation, and then the residue was purified by silica gel chromatography (hexane-EtOAc = 10:1) to give 3 in 70% yield. 1H NMR (CDCl3): δ = 4.28 (d, J = 6.9 Hz, 1 H), 4.12 (s, 1 H), 3.53-3.46 (m, 1 H), 3.45 (s, 3 H), 3.35 (s, 3 H), 2.04-1.97 (m, 1 H), 1.79-1.61 (m, 4 H), 1.25-1.12 (m, 3 H), 1.05-0.96 (m, 1 H). 13C NMR (CDCl3): δ = 108.97, 71.22, 55.26, 52.32, 45.78, 34.24, 26.37, 24.99, 24.39. Anal. Calcd for C9H18O3: C, 62.04; H, 10.41. Found: C, 61.86; H, 10.35.
10 The configuration was assigned by comparing the 1H NMR signals of the diol given by reduction of 3 (60% yield) with those reported.
[11]
11
Kakuchi T.
Narumi A.
Kaga H.
Ishibashi T.
Obata M.
Yokota K.
Macromolecules
2000,
33:
3964
12 During the reaction, we observed more amount of gas absorption than the expected amount for the reaction with epoxide. This phenomenon is probably due to the reaction of HC(OMe)3 with CO/H2 to yield CH3CH(OMe)2, MeOH and HCO2Me, see: Piacenti F.
Cioni C.
Pino P.
Chem. Ind. (London)
1960,
1240
13 Spectral data for new compounds. Compound 7a: 1H NMR (CDCl3): δ = 4.26 (d, J = 8.3 Hz, 1 H), 3.99-3.94 (m, 1 H), 3.42 (s, 3 H), 3.32 (s, 3 H), 2.68 (br s, 1 H), 2.10-2.03 (m, 1 H), 2.01-1.92 (m, 1 H), 1.88-1.81 (m, 1 H), 1.77-1.65 (m, 1 H), 1.63-1.53 (m, 1 H), 1.41-1.33 (m, 1 H). 13C NMR (CDCl3): δ = 108.02, 75.59, 54.83, 51.56, 49.26, 33.49, 25.56, 21.27. Anal. Calcd for C8H16O3: C, 59.97; H, 10.07. Found: C, 60.11; H, 9.85. Compound 7b: 1H NMR (CDCl3): δ = 4.33 (d, J = 5.5 Hz, 1 H), 3.89-3.82 (m, 1 H), 3.44 (s, 3 H), 3.37 (s, 3 H), 2.95 (d, J = 5.1 Hz, 1 H), 1.76-1.71 (m, 1 H), 1.59-1.50 (m, 1 H), 1.45-1.27 (m, 7 H), 0.97-0.90 (m, 6 H). 13C NMR (CDCl3): δ = 108.32, 70.51, 56.16, 53.88, 44.91, 35.78, 27.05, 21.46, 19.75, 14.44, 14.13. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.63; H, 11.94. Compound linear-7c: 1H NMR (CDCl3): δ = 4.29 (d, J = 6.0 Hz, 1 H), 3.70-3.64 (m, 1 H), 3.61-3.56 (m, 1 H), 3.45 (s, 3 H), 3.37 (s, 3 H), 2.85 (dd, J = 7.8, 4.1 Hz, 1 H), 1.87-1.81 (m, 1 H), 1.42-1.20 (m, 10 H), 0.88 (t, J = 6.9 Hz, 3 H). 13C NMR (CDCl3): δ = 108.89, 62.62, 55.85, 53.48, 42.73, 31.72, 29.56, 27.06, 26.61, 22.60, 14.05. Anal. Calcd for C11H24O3: C, 64.67; H, 11.84. Found: C, 64.56; H, 11.92. Compound linear-7d: 1H NMR (CDCl3): δ = 4.61 (t, J = 5.5 Hz, 1 H), 4.05-3.99 (m, 1 H), 3.55 (qd, J
H-Cl = 11 Hz,
J
H-H = 6.0 Hz, 2 H), 3.39 (s, 3 H), 3.38 (s, 3 H), 3.07 (br s, 1 H), 1.93-1.84 (m, 2 H). 13C NMR (CDCl3): δ = 103.16, 68.33, 53.87, 53.43, 49.34, 36.72. Anal. Calcd for C6H13O3Cl: C, 42.74; H, 7.77. Found: C, 42.56; H, 7.88. Compound linear-7e: 1H NMR (CDCl3): δ = 7.37-7.27 (m, 5 H), 4.60 (t, J = 5.5 Hz, 1 H), 4.56 (s, 2 H), 4.02-3.95 (m, 1 H), 3.49-3.46 (m, 1 H), 3.43-3.40 (m, 1 H), 3.36 (s, 3 H), 3.36 (s, 3 H), 2.87 (s, 1 H), 1.81-1.78 (m, 2 H). 13C NMR (CDCl3): δ = 138.00, 128.41, 127.70, 103.17, 74.09, 73.32, 67.33, 53.51, 53.32, 36.23. Anal. Calcd for C13H20O4: C, 64.98; H, 8.39. Found: C, 64.80; H, 8.35. [α]D
26 for linear-(R)-7e = 1.7° (c 3.0, CHCl3).
14 No racemization was confirmed by HPLC analysis (DAICEL CHIRALCEL OD-H, Hexane-i-PrOH = 95:5). The absolute configuration was determined based on the optical rotation of 2-hydroxy-1,4-butanediol which was prepared from linear-(R)-7e in 4 steps.
15
Rosen T.
Heathcock CH.
Tetrahedron
1986,
42:
4909
16
Heck RF.
J. Am. Chem. Soc.
1963,
85:
1460
17a
Johnson RA.
Sharpless KB. In Catalytic Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
Chap. 6A.
17b
Katsuki T. In Comprehensive Asymmetric Catalysis
Vol. II:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
New York:
1999.
Chap. 18.1.
18a
Schaus SE.
Brandes BD.
Larrow JF.
Tokunaga M.
Hansen KB.
Gould AE.
Furrow ME.
Jacobsen EN.
J. Am. Chem. Soc.
2002,
124:
1307
18b
Tokunaga M.
Larrow JF.
Kakiuchi F.
Jacobsen EN.
Science
1997,
277:
936
19a
Stork G.
Ozorio AA.
Leong YW.
Tetrahedron Lett.
1978,
52:
5175
19b
Possel O.
van Leusen AM.
Tetrahedron Lett.
1977,
18:
4229