Semin Speech Lang 2004; 25(2): 181-191
DOI: 10.1055/s-2004-825654
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Transcranial Magnetic Stimulation as a Complementary Treatment for Aphasia

Paula I. Martin1 , Margaret A. Naeser1 , Hugo Theoret2 , 4 , Jose Maria Tormos2 , 5 , Marjorie Nicholas1 , Jacquie Kurland1 , 3 , Felipe Fregni2 , Heidi Seekins1 , Karl Doron1 , Alvaro Pascual-Leone2 , 5
  • 1Boston University School of Medicine and VA Boston Healthcare System, Neuroimaging/Aphasia Research, Transcranial Magnetic Stimulation/Aphasia Research and Harold Goodglass Aphasia Research Center, Boston, Massachusetts
  • 2Laboratory for Magnetic Brain Stimulation, Beth Israel Deaconess Medical Center, Behavioral Neurology Unit, Department of Neurology, Harvard Medical School, Boston, Massachusetts
  • 3Department of Speech, Language, & Hearing Sciences and Neurosciences Program, University of Colorado at Boulder, Boulder, Colorado
  • 4Départment de Psychologie and Hôpital Ste-Justine, Université de Montréal, Montréal, Canada
  • 5Institut Guttmann de Neurorehabilitación, Instituto Universitario, Universidad Autónoma de Barcelona, Barcelona, Spain
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Functional brain imaging with nonfluent aphasia patients has shown increased cortical activation (perhaps “overactivation”) in right (R) hemisphere language homologues. These areas of overactivation may represent a maladaptive strategy that interferes with, rather than promotes, aphasia recovery. Repetitive transcranial magnetic stimulation (rTMS) is a painless, noninvasive procedure that utilizes magnetic fields to create electric currents in discrete brain areas affecting about a 1-cm square area of cortex. Slow frequency, 1 Hz rTMS reduces cortical excitability. When rTMS is applied to an appropriate cortical region, it may suppress the possible overactivation and thus modulate a distributed neural network for language. We provide information on rTMS and report preliminary results following rTMS application to R Broca's area (posterior, R pars triangularis) in four stroke patients with nonfluent aphasia (5-11 years after left hemisphere stroke). Following 10 rTMS treatments, significant improvement in naming pictures was observed. This form of rTMS may provide a novel, complementary treatment for aphasia.

REFERENCES

  • 1 Pascual-Leone A, Davey N, Wassermann EM, Rothwell J, Puri B Handbook of Transcranial Magnetic Stimulation. London, UK; Arnold Press 2002
  • 2 Walsh V, Pascual-Leone A. Neurochronometrics of Mind: Transcranial Magnetic Stimulation in Cognitive Science. Cambridge, MA; MIT Press 2003
  • 3 Rothwell J C. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex.  J Neurosci Methods. 1997;  74 113-122
  • 4 Pascual-Leone A, Tormos J M, Keenan J, Tarazona F, Canete C, Catala M D. Study and modulation of human cortical excitability with transcranial magnetic stimulation.  J Clin Neurophysiol. 1998;  15 333-343
  • 5 Chen R, Classen J, Gerloff C et al.. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 6 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 800-805
  • 7 Romero R, Anshel D, Sparing R, Gangitano M, Pascual-Leone A. Subthreshold low frequency repetitive transcranial magnetic stimulation selectively decreases facilitation in the motor cortex.  Clin Neurophysiol. 2002;  113 101-107
  • 8 Hilgetag C C, Theoret H, Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced “virtual lesions” of human parietal cortex. Is the speech arrest induced by repetitive transcranial magnetic stimulation due to disruption of the motor cortex?.  Nat Neurosci. 2001;  4 953-957
  • 9 Kosslyn S M, Pascual-Leone A, Felician O et al.. The role of area 17 in visual imagery: convergent evidence from PET and rTMS [comments].  Science. 1999;  284 167-170
  • 10 Mottaghy F M, Gangitano M, Sparing R, Krause B J, Pascual-Leone A. Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS.  Cereb Cortex. 2002;  12 369-375
  • 11 Robertson E, Tormos J M, Maeda F, Pascual-Leone A. The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information.  Cereb Cortex. 2001;  11 628-635
  • 12 Theoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans.  Neurosci Lett. 2001;  306 29-32
  • 13 Berardelli A, Inghilleri M, Rothwell J C et al.. Facilitation of muscle-evoked responses after repetitive cortical stimulation in man.  Exp Brain Res. 1998;  122 79-84
  • 14 Pascual-Leone A, Valls-Sole J, Wassermann E M, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994;  117 847-858
  • 15 Hallett M, Wassermann E M, Pascual-Leone A, Valls-Sole J. Repetitive transcranial magnetic stimulation. The International Federation of Clinical Neurophysiology.  Electroencephalogr Clin Neurophysiol Suppl. 1999;  52 105-113
  • 16 Wassermann E M, Wedegaertner F R, Ziemann U, George M S, Chen R. Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation.  Neurosci Lett. 1998;  250 141-144
  • 17 Pascual-Leone A, Houser C M, Reese K et al.. Safety of rTMS in normal volunteers.  Electroencephalogr Clin Neurophysiol. 1993;  89 120-130
  • 18 George M S, Bellmaker R H. Transcranial Magnetic Stimulation in Neuropsychiatry. Washington, DC; American Psychiatric Press 2000
  • 19 Siebner H R, Tormos J M, Ceballos-Baumann A O et al.. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp.  Neurology. 1999;  52 529-537
  • 20 Siebner H R, Auer C, Conrad B. Abnormal increase in the corticomotor output to the affected hand during repetitive transcranial magnetic stimulation of the primary motor cortex in patients with writer's cramp.  Neurosci Lett. 1999;  262 133-136
  • 21 Pascual-Leone A, Gates J R, Dhuna A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation.  Neurology. 1991;  41 697-702
  • 22 Jennum P, Friberg L, Fuglsand-Frederiksen A, Dam M. Speech localization using repetitive transcranial magnetic stimulation.  Neurology. 1994;  44 269-273
  • 23 Epstein C M, Lah J J, Meador K, Weissman J D, Gaitan L E, Dihenia B. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation.  Neurology. 1996;  47 1590-1593
  • 24 Epstein C M, Meador K J, Loring D W et al.. Localization and characterization of speech arrest during transcranial magnetic stimulation.  Clin Neurophysiol. 1999;  110 1073-1079
  • 25 Stewart L, Meyer B, Frith U, Rothwell J. Left posterior BA 37 is involved in object recognition: a TMS study.  Neuropsychologia. 2001;  39 1-6
  • 26 Flitman S S, Grafman J, Wassermann E M et al.. Linguistic processing during repetitive transcranial magnetic stimulation.  Neurology. 1998;  50 175-181
  • 27 Wassermann E M, Blaxton T A, Hoffman E A et al.. Repetitive transcranial magnetic stimulation of the dominant hemisphere can disrupt visual naming in temporal lobe epilepsy patients.  Neuropsychologia. 1999;  37 537-544
  • 28 Töpper R, Mottaghy F M, Brugmann M, Noth J, Huber W. Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke's area.  Exp Brain Res. 1998;  121 371-378
  • 29 Mottaghy F M, Hungs M, Brugmann M et al.. Facilitation of picture naming after repetitive transcranial magnetic stimulation.  Neurology. 1999;  53 1806-1812
  • 30 Stewart L M, Walsh V, Rothwell J C. Motor and phosphene threshold: a transcranial magnetic stimulation correlation study.  Neuropsychologia. 2001;  39 415-419
  • 31 Shapiro K A, Pascual-Leone A, Mottaghy F M, Gangitano M, Caramazza A. Grammatical distinctions in the left frontal cortex.  J Cogn Neurosci. 2001;  13 713-720
  • 32 Naeser M A, Palumbo C L, Helm-Estabrooks N, Stiassny-Eder D, Albert M L. Severe non-fluency in aphasia: role of the medial subcallosal fasciculus plus other white matter pathways in recovery of spontaneous speech.  Brain. 1989;  112 1-38
  • 33 Naeser M A, Palumbo C L. Neuroimaging and language recovery in stroke.  J Clin Neurophysiol. 1994;  11 150-174
  • 34 Heiss W D, Karbe H, Weber-Luxenburger G et al.. Speech-induced cerebral metabolic activation reflects recovery from aphasia.  J Neurol Sci. 1997;  145 213-217
  • 35 Heiss W D, Kessler J, Thiel A, Ghaemi M, Karbe H. Differential capacity of left and right areas for compensation of poststroke aphasia.  Ann Neurol. 1999;  45 430-438
  • 36 Karbe H, Thiel A, Weber-Luxenburger, Kessler J, Herholz K, Heiss W D. Reorganization of the cerebral cortex in post-stroke aphasia studied with positron emission tomography.  Neurology. 1998;  50 A321
  • 37 Warburton E, Price C J, Swinburn K, Wise R J. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies.  J Neurol Neurosurg Psychiatry. 1999;  66(suppl 4) 155-161
  • 38 Miura K, Nakamura Y, Miura F et al.. Functional magnetic resonance imaging to word generation task in a patient with Broca's aphasia.  J Neurol. 1999;  246 939-942
  • 39 Metter E J. Neuroanatomy and physiology of aphasia: evidence from positron emission tomography.  Aphasiology. 1987;  1 3-33
  • 40 Belin P, Van Eeckhout P, Zilbovicious M et al.. Recovery from nonfluent aphasia after melodic intonation therapy: a PET study.  Neurology. 1996;  47 1504-1511
  • 41 Thulborn K R, Carpenter P A, Just M A. Plasticity of language-related brain function during recovery from stroke.  Stroke. 1999;  30 749-754
  • 42 Musso M, Weiller C, Kiebel S, Muller S P, Bulau P, Rijntjes M. Training-induced brain plasticity in aphasia.  Brain. 1999;  122 1781-1790
  • 43 Rosen H J, Petersen S E, Linenweber M R et al.. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex.  Neurology. 2000;  55 1883-1894
  • 44 Cappa S F, Perani D, Grassi F et al.. A PET follow-up study of recovery after stroke in acute aphasics.  Brain Lang. 1997;  56 55-67
  • 45 Cao Y, Vikingstad E M, George K P, Johnson A F, Welch K M. Cortical language activation in stroke patients recovering from aphasia with functional MRI.  Stroke. 1999;  30 2331-2340
  • 46 Hund-Georgiadis M, Lex U, von Cramon D Y. Activation patterns of speech function in chronic aphasia. Poster presented at: Fifth International Conference on Functional Mapping of the Human Brain;. June 1999 Dusseldorf, Germany;
  • 47 Weiller C, Isensee C, Rijntnes M et al.. Recovery from Wernicke's aphasia: a positron emission tomographic study.  Ann Neurol. 1995;  37 723-732
  • 48 Basso G, Romero S, Pietrini P, Beeson P M, Rapczack S, Grafman J. Neurofrontal correlates of language reorganization after massive hemisphere stroke. Poster presented at: Fourth International Conference on Functional Mapping of the Human Brain; June 7-12, 1998 Montreal, Quebec, Canada; Neuroimage 1998 7(4): S472
  • 49 Mimura M, Kato M, Kato M et al.. Prospective and retrospective studies of recovery in aphasia. Changes in cerebral blood flow and language functions.  Brain. 1998;  121 2083-2094
  • 50 Ansaldo A I, Arguin M, Lecours A R. The contribution of the right cerebral hemisphere to the recovery from aphasia: a single longitudinal case study.  Brain Lang. 2002;  82 206-222
  • 51 Naeser M A, Martin P I, Baker E H et al.. Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method.  Neuroimage. 2004;  , (in press)
  • 52 Kapur N. Paradoxical functional facilitation in brain-behavior research-a critical review.  Brain. 1996;  119 1775-1790
  • 53 Helm-Estabrooks N, Yeo R, Geschwind N, Freedman M, Weinstein C. Stuttering: disappearance and reappearance with acquired brain lesions.  Neurology. 1986;  3 1109-1112
  • 54 Vuilleumier P, Hester D, Assal G, Regli F. Unilateral spatial neglect recovery after sequential strokes.  Neurology. 1996;  46 184-189
  • 55 Fitzpatrick P, Glosser G, Helm-Estabrooks N. Long-term recovery of linguistic and nonlinguistic functions in aphasia. Poster presented at: Academy of Aphasia 1988 Montreal, Quebec, Canada;
  • 56 Naeser M, Theoret H, Kobayashi M et al.. Modulation of cortical areas with repetitive transcranial magnetic stimulation to improve naming in nonfluent aphasia [abstract #133]. Eighth International Conference on Functional Mapping of the Human Brain; June 2-6 2002 Sendai, Japan; [Available on CD-ROM in Neuroimage 2002;16(2)]
  • 57 Snodgrass J, Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity.  J Exp Psychol Hum Learn. 1980;  6 174-215
  • 58 Naeser M A, Martin P I, Nicholas M L et al.. Improved naming after rTMS treatment in chronic aphasia patients. Poster presented at: 32nd Annual Meeting of the International Neuropsychological Society; February 4-7 2004 Baltimore, MD;
  • 59 Kaplan E, Goodglass H, Weintraub S. The Boston Naming Test. Philadelphia, PA; Lippincott Williams Wilkins 2001
  • 60 Goodglass H, Kaplan E, Barresi B. The Assessment of Aphasia and Related Disorders, 3rd edition. Philadelphia, PA; Lippincott Williams Wilkins 2001
  • 61 Martin P I, Naeser M A, Doron K W et al.. Overt naming in aphasia: hemodynamic delay design and analysis with fMRI BOLD. Poster presented at: 32nd Annual Meeting of the International Neuropsychological Society; February 4-7 2004 Baltimore, MD;
  • 62 Naeser M A, Martin P I, Nicholas M L et al.. Sustained improved naming after rTMS treatment in a severe aphasia patient. Poster presented at: 32nd Annual Meeting of the International Neuropsychological Society; February 4-7 2004 Baltimore, MD;
  • 63 Martin A, Wiggs C L, Ungerleider L G, Haxby J V. Neural correlates of category-specific knowledge.  Nature. 1996;  379 649-652
  • 64 Abrahams S, Goldstein L H, Simmons A et al.. Functional magnetic resonance imaging of verbal fluency and confrontation naming using compressed image acquisition to permit overt responses.  Hum Brain Mapp. 2003;  20 29-40
  • 65 Frith C D, Friston K J, Liddle P F, Frackowiak F SJ. A PET study of word finding.  Neuropsychologia. 1991;  29 1137-1148
  • 66 Cuenod C A, Bookheimer S Y, Hertz-Pannier L, Zeffiro T A, Theodore W H, Le Biahn D. Functional MRI during word generation, using conventional equipment: a potential tool for language localization in the clinical environment.  Neurology. 1995;  45 1821-1827
  • 67 Damasio H, Grabowski T J, Tranel D, Hichwa R D, Damasio A R. A neural basis for lexical retrieval.  Nature. 1996;  380 499-505
  • 68 Warburton E, Wise R JS, Price C J et al.. Noun and verb retrieval by normal subjects, studies with PET.  Brain. 1996;  119 159-179
  • 69 Price C J, Warburton E A, Moore C J, Frackowiak R SJ, Friston K J. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.  J Cogn Neurosci. 2001;  13 419-429
  • 70 Klein E, Kreinin I, Chistyakov A et al.. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study.  Arch Gen Psychiatry. 1999;  56 315-320
  • 71 Krengel M H, Diamond R, White R F. A nonverbal analogue mood scale for neurologic patients.  Clin Neuropsychol. 1994;  8 348
  • 72 Seekins H E, Naeser M A, Martin P I et al.. Improvement in mood scale for chronic aphasia patients treated with rTMS. Poster presented at: 32nd Annual Meeting of the International Neuropsychological Society; February 4-7 2004 Baltimore, MD;
  • 73 Naeser M A, Palumbo C L, Prete M N et al.. Visible changes in lesion borders on CT scan after five years poststroke, and long-term recovery in aphasia.  Brain Lang. 1998;  62 1-28

Paula Martin

VA Boston Healthcare System (12-A)

150 So. Huntington Ave., Boston, MA, 02130

Email: paulak@bu.edu