Subscribe to RSS
DOI: 10.1055/s-2004-825725
Possible Role of VEGF in the Progression of Kidney Disease in Streptozotocin (STZ)-induced Diabetic Rats: Effects of an ACE Inhibitor and an Angiotensin II Receptor Antagonist
Publication History
Received 1 April 2003
Acceped after second Revision 6 January 2004
Publication Date:
23 July 2004 (online)
Abstract
Two endothelium-derived factors, endothelin (ET), a vasoconstrictor, and vascular endothelial growth factor (VEGF), an angiogenic factor are thought to be involved in the pathogenesis of diabetic vascular complications. The aim of this study was to determine the effects of an angiotensin II type I (AT-1) receptor antagonist and an ACE inhibitor on the pathogenesis of VEGF and ET-1-mediated kidney disease in STZ-induced diabetic rats. Two days after STZ administration, diabetic rats were treated for 8 weeks with enalapril maleate, an ACE inhibitor, candesartan cilexetil, an AT-1 receptor antagonist, or saline. Urinary albumin and N-acetyl β-D glucosaminidase (NAG) excretion as well as the VEGF protein content in the kidney were all found to be elevated in diabetic rats. Administration of enalapril maleate or candesartan cilexetil decreased the level of microalbuminuria and NAG excretion in diabetic rats. Administration of enalapril maleate also suppressed the elevated renal VEGF protein content in these animals while candesartan cilexetil treatment had no effect. Serum ET-1 and VEGF levels were unchanged by these treatments. These data support a role for AT-1 receptor antagonists and ACE inhibitors in the prevention of diabetic nephropathy, and suggest that the former may work by reducing renal VEGF levels.
Key words
AT-1 - ACE-I - VEGF - Endothelin-1 - Diabetes - Rat
References
- 1 Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988; 332 411-415
- 2 Leung D W, Cachianes G, Kuang W J, Goeddel D V, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989; 246 1306-1309
- 3 Ferrara N, Henzel W J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989; 161 851-858
- 4 UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ. 1998; 317 (7160) 713-720
- 5 Komers R, Anderson S. Treatment of hypertension in diabetic patients with nephropathy. Curr Diab Rep. 2001; 1 251-260
- 6 Candido R, Allen T J. Haemodynamics in microvascular complications in type 1 diabetes. Diabetes Metab Res Rev. 2002; 18 286-304
- 7 Thursman J M, Schrier R W. Comparative effects of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on blood pressure and the kidney. Am J Med. 2003; 114 588-598
- 8 Hall R L, Wilke W L, Fettman M J. Captopril slows the progression of chronic renal disease in partially nephrectomized rats. Toxicol Appl Pharmacol. 1985; 80 517-526
- 9 Remuzzi A, Puntorieri S, Battaglia C, Bertani T, Remuzzi G. Angiotensin converting enzyme inhibition ameliorates glomerular injury in the rat. J Clin Invest. 1990; 85 541-549
- 10 Taguma Y, Kitamoto Y, Futaki G, Ueda H, Monma H, Ishizaki M, Takahashi H, Sekino H, Sasaki Y. Effect of captopril on heavy proteinuria in azotemic diabetics. N Engl J Med. 1985; 313 1617-1620
- 11 Praga M, Hernandez E, Montoyo C, Andres A, Ruilope L M, Rodicio J L. Long-term beneficial effects of angiotensin-converting enzyme inhibition in patients with nephrotic proteinuria. Am J Kidney Dis. 1992; 20 240-248
- 12 Bain R, Rohde R, Hunsicker L G, McGill J, Kobrin S, Lewis E J. A controlled clinical trial of angiotensin-converting enzyme inhibition in type 1 diabetic nephropathy: Study design and patient characteristics. J Am Soc Nephrol. 1992; 3 S97-S103
- 13 Lewis E J, Hunsicker L G, Bain R P, Rohde R D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993; 329 1456-1462
- 14 Parving H H, Hommel E, Damkjaer Nielsen M, Giese J. Effect of captopril on blood pressure and kidney function in normotensive insulin dependent diabetics with nephropathy. Br Med J. 1989; 299 533-536
- 15 Viberti G, Mogensen C E, Groop L C, Pauls J F. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. JAMA. 1994; 271 275-279
- 16 Ichikawa I, Harris R. Angiotensin-actions in the kidney: renewed insight into the old hormone. Kidney Int. 1991; 40 583-596
- 17 Gansevoort R, de Zeeuw D, de Jong P E. Is the antiproteinuric effect of ACE inhibition mediated by interference in the renin-angiotensin system?. Kidney Int. l994; 45 861-867
- 18 Russo D, Pisani A, Balletta M M, de Nicola L, Savino F A, Andreucci M. Additive antiproteinuric effect of converting enzyme inhibitor and losartan in normotensive patients with IgA nephropathy. Am J Kidney Dis. 1999; 33 851-856
- 19 Okada H, Suzuki H, Kanno Y, Ikenaga H, Saruta T. Renal responses to angiotensin receptor antagonist and angiotensin-converting enzyme inhibitor in partially nephrectomized spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1995; 26 563-569
- 20 Plum J, Bunten B, Nemeth R, Grabensee B. Effects of the angiotensin II antagonist valsartan on blood pressure, proteinuria, and renal hemodynamics in patients with chronic renal failure and hypertension. J Am Soc Nephrol. 1998; 9 2223-2234
- 21 Brenner B M, Cooper M E, Zeeuw Dd D, Grunfeld J P, Keane W F, Kurokawa K, MCGill J B, Mitch W E, Parving H H, Remuzzi G, Ribeiro A B, Schluchter M D, Snavely D, Zhang Z, Simpa R, Shahinar S. The losartan renal protecion study - rationale, study design and baseline characteristics of RENAAL (Reduction of Endpoints in NIDDM with Angiotensin II Antagonist Losartan). J Renin Angiotensin Aldosterone Syst. 2000; 1 328-335
- 22 Rodby R A, Rohde R D, Clarke W R, Hunsicker L G, Anzalone D A, Atkins R C, Ritz E, Lewis E J. The Irbesartan type II diabetic nephropathy trial: study design and baseline patient characteristics. For the Collaborative Study Group. Nephrol Dial Transplant. 2000; 15 487-497
- 23 Aiello L P, Avery R L, Arrigg P G, Key B A, Jampel H D, Shan S T, Pasquale L R, Thieme H, Iwamoto M A, Park J E. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994; 331 1480-1487
- 24 Adamis A P, Miller J W, Bernal M T, D'Amico D J, Folkman J, Yeo T K, Yeo K T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 1994; 118 445-450
- 25 Amin R H, Frank R N, Kennedy A, Eliott D, Puklin J E, Abrams G W. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 1997; 38 36-47
- 26 Tolentino M J, Miller J W, Gragoudas E S, Jakobiec F A, Flynn E, Chatzistefanou K, Ferrara N, Adamis A P. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996; 103 1820-1828
- 27 Tolentino M J, Miller J W, Gragoudas E S, Chatzistefanou K, Ferrara N, Adamis A P. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol. 1996; 114 964-970
- 28 Santilli F, Spagnoli A, Mohn A, Tumini S, Verrotti A, Cipollone F, Mezzetti A, Chiarelli F. Increased vascular endothelial growth factor serum concentrations may help to identify patients with onset of type 1 diabetes during childhood at risk for developing persistent microalbuminuria. J Clin Endocrinol Metab. 2001; 86 3871-3876
- 29 Cediel E, Vazquez-Cruz B, Navarro-Cid J, de Las Heras N, Sanz-Rosa D, Cachofeiro V, Lahera V. Role of endothelin-1 and thromboxane A2 in renal vasoconstriction induced by angiotensin II in diabetes and hypertension. Kidney Int. 2002; Supple (82) 2-7
- 30 Cardillo C, Campia U, Bryant M B, Panza J A. Increased activity of endogenous endothelin in patients with type II diabetes mellitus. Circulation. 2002; 106 (14) 1783-1787
- 31 Taylor A A. Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin North Am. 2001; 30 (4) 983-997
- 32 Tsilibary E C. Microvascular basement membranes in diabetes mellitus. J Pathol. 2003; 200 537-546
- 33 Cha D R, Kim N H, Yoon J W, Jo S K, Cho W Y, Kim H K, Won N H. Role of vascular endothelial growth factor in diabetic nephropathy. Kidney Int. 2000; 58 (Suppl 77) 104-112
- 34 Mather K J, Mirzamohammadi B, Lteif A, Steinberg H O, Baron A D. Endothelin contributes to basal vascular tone and endothelial dysfunction in human obesity and type 2 diabetes. Diabetes. 2002; 51 3517-3523
- 35 Moser M. Current recommendations for the treatment of hypertension: are they still valid?. J Hypertens. 2002; 20 (Suppl 1) S3-S10
- 36 Deferrari G, Ravera M, Deferrari L, Vettoretti S, Ratto E, Parodi D. Renal and cardiovascular protection in type 2 diabetes mellitus: angiotensin II receptor blockers. J Am Soc Nephrol. 2002; 13 (Suppl 3) S224-S229
- 37 Ravid M, Brosh D, Levi Z, Bar-Dayan Y, Ravid D, Rachmani R. Use of enarapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. Ann Intern Med. 1998; 128 982-988
- 38 The EUCLID Study Group . Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet. 1997; 394 1787-1792
- 39 Zanella M T, Ribeiro A B. The role of angiotensin II antagonism in type 2 diabetes mellitus: a review of renoprotection studies. Clin Ther. 2002; 24 1019-1034
- 40 Ellis E N, Broouhard B H, LaGrone L. Urinary N-acetyl-β-D-glucosaminidase in streptozotocin-induced diabetic rats. Biochemcal Medicine. 1984; 31 303-310
- 41 Scherberich J E. Urinary proteins of tubular origin: Basic immunochemical and clinical aspects. Am J Nephrol. 1990; 10 (suppl 1) 43-51
- 42 Brenner B M, Cooper M E, de Zeeuw D, Keane W F, Mitch W E, Parving H H, Remuzzi G, Snapinn S M, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345 861-869
- 43 Parving H H, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001; 345 870-878
- 44 Lewis E J, Hunsicker L G, Clarke W R, Berl T, Pohl M A, Lewis J B, Ritz E, Atkins R C, Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001; 345 851-860
- 45 Matsubara H. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res. 1998; 83 1182-1191
- 46 Pintérová L, Zelezná B, Ficková , Marcho L, Krizanová O, Jezová D, Zórad S. Elevated AT1 receptor protein but lower angiotensin II-binding in adipose tissue of rats with monosodium glutamate-induced obesity. Horm Metab Res. 2001; 33 708-712
- 47 Schling P. Expression of angiotensin II receptors type 1 and type 2 in human preadipose cells during differentiation. Horm Metab Res. 2002; 34 709-715
- 48 Takahashi K, Ghatei M A, Lam H C, O’Halloran D J, Bloom S R. Elevated plasma endothelin in patients with diabetes mellitus. Diabetologia. 1990; 33 306-310
- 49 Itoh Y, Nakai A, Kakizawa H, Makino M, Fujiwara K, Kobayashi T, Kato T, Nagata M, Oda N, Katsumata K, Nagasaka A, Itoh M. Alteration of endothelin-1 concentration in STZ-induced diabetic rat nephropathy. Horm Res. 2001; 56 165-171
- 50 Itoh Y, Imamura S, Yamamoto K, Ono Y, Nagata M, Kobayashi T, Kato T, Tomita M, Nakai A, Itoh M, Nagasaka A. Change of endothelin in streptozotocin-induced diabetic rats: effects of an angiotensin converting enzyme inhibitor, enalapril maleate. J Endocrinol. 2002; 175 233-239
- 51 Ozaki H, Yu A Y, Della N, Ozaki K, Luna J D, Yamada H, Hackett S F, Okamoto N, Zack D J, Semenza G L, Campochiaro P A. Hypoxia inducible factor-1 alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci. 1999; 40 182-189
- 52 Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S. The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia. 1997; 40 764-769
- 53 Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis A P. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest. 1998; 101 1219-1224
- 54 Poulaki V, Qin W, Joussen A M, Hurlbut P, Wiegand S J, Rudge J, Yancopoulos G D, Adamis A P. Acute insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1α and VEGF. J Clin Invest. 2002; 109 805-815
- 55 Natarajan R, Bai W, Lanting L, Gonzales N, Nadler J. Effect of high glucose on vascular endothelial growth factor expression in vascular smooth muscle cells. Am J Physiol. 1997; 273 H2224-2231
Prof. M. Itoh, M. D.
The Division of Endocrinology & Metabolism · The Department of Internal Medicine · Fujita Health University · School of Medicine
1-98 Dengakugakubo · Kutsukake · Toyoake · Aichi 470-1192 · Japan
Phone: + 81/562/93-9242
Fax: + 81/562/95-1879
Email: mituyasu@fujita-hu.ac.jp