Horm Metab Res 2004; 36(8): 542-549
DOI: 10.1055/s-2004-825760
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

α-lipoic Acid Mitigates Insulin Resistance in Goto-Kakizaki Rats

M.  S.  Bitar1 , S.  Wahid1 , C.  W.  T.  Pilcher1 , E.  Al-Saleh3 , F.  Al-Mulla2
  • 1Department of Pharmacology & Toxicology, Kuwait University, Faculty of Medicine, Safat, Kuwait
  • 2Dept. of Pathology, Kuwait University, Faculty of Medicine, Safat, Kuwait
  • 3Dept.of Obstetrics & Gynaecology, Kuwait University, Faculty of Medicine, Safat, Kuwait
Further Information

Publication History

Received 29 October 2003

Accepted after Revision 1 March 2004

Publication Date:
24 August 2004 (online)

Abstract

Impaired glucose uptake and metabolism by peripheral tissues is a common feature in both type I and type II diabetes mellitus. This phenomenon was examined in the context of oxidative stress and the early events within the insulin signalling pathway using soleus muscles derived from non-obese, insulin-resistant type II diabetic Goto-Kakizaki (GK) rats, a well-known genetic rat model for human type II diabetes. Insulin-stimulated glucose transport was impaired in soleus muscle from GK rats. Oxidative and non-oxidative glucose disposal pathways represented by glucose oxidation and glycogen synthesis in soleus muscles of GK rats appear to be resistant to the action of insulin when compared to their corresponding control values. These diabetes-related abnormalities in glucose disposal were associated with a marked diminution in the insulin-mediated enhancement of protein kinase B (Akt/PKB) and insulin receptor substrate-1 (IRS-1)-associated phosphatidylinostol 3-kinase (PI 3-kinase) activities; these two kinases are key elements in the insulin signalling pathway. Moreover, heightened state of oxidative stress, as indicated by protein bound carbonyl content, was evident in soleus muscle of GK diabetic rats. Chronic administration of the hydrophobic/hydrophilic antioxidant α -lipoic-acid (ALA, 100 mg/kg, ip) partly ameliorated the diabetes-related deficit in glucose metabolism, protein oxidation as well as the activation by insulin of the various steps of the insulin signalling pathway, including the enzymes Akt/PKB and PI-3 kinase. Overall, the current investigation illuminates the concept that oxidative stress may indeed be involved in the pathogenesis of certain types of insulin resistance. It also harmonizes with the notion of including potent antioxidants such as ALA in the armamentarium of antidiabetic therapy.

References

  • 1 Olefsky J M, Kolterman O G. Scarlwtt JA. Insulin action and resistance in obesity and non-insulin-dependent type II diabetes mellitus.  Am J Physiol. 1982;  243 E15-E30
  • 2 Shepherd P R, Kahn B B. Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus.  N Engl J Med. 1999;  341 248-257
  • 3 Hamman R F. Genetic and environmental determinations of non-insulin-dependent diabetes mellitus (NIDDM). Diabetes. Metab.  Rev. 1992;  8 287-338
  • 4 Kahn C R. The molecular mechanisms of insulin action.  Annu Rev Med. 1985;  36 429-451
  • 5 Reavon G M. Role of insulin resistance in human disease.  Diabetes. 1988;  37 1595-1607
  • 6 De Fronzo R A. Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipedemia and atherosclerotic cardiovascular disease.  Diabetes care. 1991;  14 173-194
  • 7 Kraus W. Insulin resistance syndrome and cardiovascular disease: Genetic and connections to skeletal muscle function.  Am Heart J. 1999;  138 413-416
  • 8 De Fronzo R A. Lilly lecture 1987: The triumvirate: β-cell, muscle, liver: a collusion responsible for NIDDM.  Diabetes. 1988;  37 667-687
  • 9 Dombrowski L, Roy D, Marcottee B, Marette A. A new procedure for the isolation of plasma membrane, T tubules and internal membranes from skeletal muscle.  Am J Physiol. 1996;  270 E667-E676
  • 10 Czech M P, Corvera S. Signaling mechanisms that regulates glucose transport.  J Biol Chem. 1996;  274 1865-1868
  • 11 Zorzano A, Munoz P, Camps M, Mora C, Testar X, Palacin M. Insulin induced redistribution of GLUT4 glucose carriers in the muscle fibre in search of GLUT4 trafficking pathways.  Diabetes. 1996;  45 S70-S81
  • 12 Sun X J, Pons S, Asano T, Myers M G, Jr, Glasheen E M, White M F. The Fyn Tyrosine Kinase Binds Irs-1 and Forms a Distinct Signaling Complex during Insulin Stimulation.  J Biol Chem. 1996;  271 10583-10587
  • 13 Beitner-Johnson D, Blakesley V A, Shen-Orr Z, Jimenez M, Stannard B, Wang LM, Pierce JH, Le Roith D. The Proto-oncogene Product c-Crk Associates with Insulin Receptor Substrate-1 and 4PS.  J Biol Chem. 1996;  271 9287-9290
  • 14 Shepherd P R, Withers D J, Siddle K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling.  Biochem J. 1998;  333 471-490
  • 15 Tirosh A, Rudich A, Potashinik R, Bashan N. Oxidative stress impairs insulin but not platelet-derived growth factor signalling in 3T3-L1 adiopocytes. Biochem.  J. 2001;  355 757-763
  • 16 Blair A S, Hajduch E, Litherland G J, Hundal H S. Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress.  J Biol Chem. 1999;  274 36 293-36 299
  • 17 Jacob S, Henriksen E J, Schiemann A L. et al . Enhancement of glucose disposal in patients with type II diabetes by alpha-lipoic acid.  Arzneimittelforschung. 1995;  45 872-874
  • 18 Caballero B. Vitamin E improves the action of insulin.  Nutr Rev. 1993;  51 319-340
  • 19 Paolisso G D, Amore A, Bulbi V. et al . Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin dependent diabetics.  Am J Physiol. 1994;  266 E261-E268
  • 20 Goto Y, Kakizaki M, Masaki N. Production of spontaneous diabetic rats by repetition of selective breeding.  Tohoku J Exp Med. 1975;  119 85-90
  • 21 Goto Y, Kakizaki M, Masaki N. Spontaneous diabetes produced by selective breeding of normal Wistar rats.  Proc J Jpn Acad. 1975;  5 80-85
  • 22 Goto Y, Suzuki K I, Sasaki M, Ono T, Abe S. GK rat as a model of non obese, non insulin dependent diabetes: Selective breeding over 35 generations. In: Shafir E, Renold AE, (eds) Frontiers in Diabetes Research. Lessons from Animal Diabetes 11. London; John Libbey 1988: 301-303
  • 23 Henriksen E J, Tischler M E. Time course of the response of carbohydrate metabolism to unloading of the soleus.  Metabolism. 1988;  37 201-208
  • 24 Gulve E A, Henriksen E J, Rodnick K J, Youn J H, Hollozy J O. Glucose transporters and glucose transport in skeletal muscles of 1 to 25 month old rats.  Am J Physiol. 1993;  264 E319-E327
  • 25 Hadari Y R, Tzahar E, Nadiv O, Rothenberg P, Roberts C T, Jr, Le Roith D, Yarden Y, Zick Y. Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3-kinase upon its association with pp 185 (IRS-1) in intact rat liver.  J Biol Chem. 1992;  267 17483-17486
  • 26 Cross D A, Alessi D R, Cohen P, Andjelkovich M, Hemmings B A. Inhibition of glycogen synthetase kinase-3 by insulin-mediated by protein kinase B.  Nature. 1995;  378 785-789
  • 27 Tanti J F, Grillo S, Gremeau T, Coffer P J, Van Obberghen E, Le Marchand-Brustel Y. Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes.  Endocrinology. 1997;  138 2005-2010
  • 28 Harano Y, Ohgaku S, Kosugi K, Yasuda H, Nakano T, Kobayashi M, Hiduka H, Izumi K, Kashiwagi A, Shigeta Y. Clinical significance of altered insulin sensitivity in diabetes mellitus assessed by glucose, insulin and somatostatin infusion.  J Clin Endocrinol Meta. 1981;  52 982-987
  • 29 Perez-Martin A, Raynaud E, Hentgen C, Bringer J, Mercier J, Brun J F. Simplified measurement of insulin sensitivity with the minimal model procedure in type 2 diabetic patients without the measurement of insulinemia.  Horm Metab Res. 2002;  34 102-106
  • 30 Levine R L, Garland D, Oliver C W. et al . Determination of carbonyl content in oxidatively modified proteins.  Methods Enzymol. 1990;  186 464-478
  • 31 Reznick A Z, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay.  Methods Enzymol. 1994;  233 357-363
  • 32 Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein Measurement with the folin phenol reagent.  J Biol Chem. 1951;  193 265-275
  • 33 Shepherd P R, Withors D J, Siddle K. Phosphoinositide 3-kinase: The key switch mechanism in insulin signalling.  Biochem J. 1998;  333 471-490
  • 34 Davies K J. Protein damage and degredation by oxygen radicals. I. General aspects.  J Biol Chem. 1987;  262 9895-9901
  • 35 Fucci L, Oliver C N, Coon M, Stadtman E R. Inactivation of key metabolic enzymes by mixed function oxidation reaction: possible implication in protein turnover and aging.  Proc Natl Acad Sci USA. 1983;  80 1521-1525
  • 36 Oliver C N, Starke-Reed P E, Stadtman E R, Liu G J, Carey J M, Floyd R A. Oxidative damage to brain protein, loss of glutamine synthetase activity and production of free radical during ischemia/reperfusion-induced injury to gerbil brain.  Proc Natl Acad Sci USA. 1990;  87 5144-5147
  • 37 Jacob S, Streeper R S, Fogt D L, Hokama J Y, Tritschler H J, Dietze G L, Henriksen E J. The antioxidant α-lipoic acid enhances insulin-stimulated glucose metabolism in insulin-resistant rat skeletal muscle.  Diabetes. 1996;  45 1024-1029
  • 38 Yu C, Chew Y, Cline G W. et al . Mechanism by which fatty acids inhibits insulin activation of insulin receptor substrate-1 (IRS-1) associated phosphatidyl inositol 3-kinase activity in muscle.  J Biol Chem. 2002;  277 50230-50236
  • 39 Kosaki A, Yamada K, Suga A, Kuzuya H. 14-3-3beta protein associates with insulin receptor substrate 1 and decreases insulin stimulated phosphatidyl inositol 3-kinase activity in 3T3L1 adipocytes.  J Biol Chem. 1998;  273 940-944
  • 40 Burgering B, Coffer P. Protein kinase B(c-Akt) in phospholidylinositol-3-OH kinase signal transduction.  Nature. 1995;  376 599-602
  • 41 Frank T, Yang S, Chan T, Datta K, Kazlauskas A, Morrison D, Kaplan D, Tsichlis P. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphotidylinositol 3-kinase.  Cell. 1995;  81 727-736
  • 42 Kohn A, Kovacina K, Roth R. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing serthr kinase.  EMBO J. 1995;  14 4288-4295
  • 43 Didichenko S, Tilton B, Hemmings B, Ballmer-Hofer K, Thelen M. Constitutive activation of protein kinase B and phosphorylation of p47 phox by a membrane-targeted phosphoinositide 3-kinase.  Curr Biol. 1996;  6 1271-1278
  • 44 Klippel A, Reinhard C, Kavanaugh W, Appell G, Escobedo M, Williams L. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal transducting kinase pathways.  Mol Cell Biol. 1996;  16 4117-4127
  • 45 Wang Q, Somwar R, Bilan P J, Liu Z, Jin J, Woodgeth J R, Klip A. Protein kinase B Akt participates in GLUT4 translocation by insulin in L6 myoblasts.  Mol Cell Biol. 1999;  19 4008-4018
  • 46 Song X, Kawano Y, Krook A, Ryder J, Efendic S, Roth R, Wallberg-Henriksson H, Zierath J. Muscle fiber type-specific defects in insulin signal transduction to glucose transport in diabetic GK rats.  Diabetes. 1999;  48 664-670
  • 47 Nawano M, Ueta K, Oku A, Arakawa K, Saito A, Funaki M, Anai M, Kikuchi M, Oka Y, Asano T. Hyperglycemia impairs the insulin signalling step between PI 3-kinase and Akt/PKB activation in ZDF rat liver.  Biochem Biophys Res Commun. 1999;  266 252-256
  • 48 Oku A, Nawano M, Ueta K. et al . Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle.  Am J Physiol. 2001;  280 E816-E-825
  • 49 Krook A, Roth R A, Jiang X J, Zierath J R, Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects.  Diabetes. 1998;  47 1281-1286
  • 50 Cohen P, Alessi D R, Cross D AE. PDK1, one of the missing links in insulin signal transduction.  FEBS Lett. 1997;  410 3-10
  • 51 Bellacosa A, Chan T O, Ahmed N N, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tsichlis P. Akt activation by growth factor is a multiple-step process: the role of the PH domain.  Oncogene. 1998;  17 313-325
  • 52 Downward J. Lipid-regulated kinases: some common themes at last.  Science. 1998;  279 673-674
  • 53 Phillay T S, Xiao S, Olefsky J M. Glucose-induced phosphorylation of the insulin receptor. Functional effects and characterization of phosphorylation sites.  J Clin Invest. 1996;  97 613-620
  • 54 Muller H K, Kellerer M, Ermel B, Muhlhofer A, Obermaier K B, Vogt B, Haring H U. Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tynosine. Kinase resistance in rat fat cells.  Diabetes. 1991;  40 1440-1448
  • 55 Ruderman N B, Saha A K, Vavvas D, Heydrick S J, Kurowski T G. Lipid abnormalities in muscle of insulin-resistant rodents: the malonyl COA hypothesis.  Ann NY Acad Sci. 1996;  827 221-230
  • 56 Laybutt D R, Schmitz-Peiffer C, Saha A K, Ruderman N B, Chisholm D, Biden T, Kraegen E W. Activation of protein kinase C may contribute to muscle insulin-resistance induced by lipid accumulation during chronic glucose infusion in rats (Abstract).  Diabetes. 1997;  46 241A
  • 57 Barthel A, Nakatani K, Dandekar A, Roth R A. Protein kinase C modulates the insulin-stimulated increase in Akt 1 and Akt 3 activity in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 1998;  243 509-513
  • 58 Tirosh A, Potashnik R, Bashan N, Rudich A. Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphotidylinositol 3-kinase in 3T3 adipocytes: A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation.  J Biol Chem. 1999;  274 10595-10602
  • 59 Hansen L L, Ikeda Y, Olsen G S, Bush A K, Mosthaf L. Insulin signalling is inhibited by micromolar concentrations of H2O2. Evidence for a role of H2O2 in tumor necrosis factor alpha-mediated insulin resistance.  J Biol Chem. 1999;  274 25 078-25 084
  • 60 Maddux B A, See W, Lawrence J C, Goldfine A L, Goldfine I D, Evans J L. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by micromolar concentrations of α-lipoic acid.  Diabetes. 2001;  50 404-410
  • 61 Rosen P, Naworth P P, King G, Moller W, Tritschler H J, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications.  Diabetes Metab Res Rev. 2001;  17 189-212
  • 62 Brownlee M. Biochemistry and Molecular cell biology of diabetic complications.  Nature. 2001;  414 813-820
  • 63 Gopaul N K, Manraj M D, Hebe A, Lee K wai, Johnston A, Carrier M J, Anggard E E. Oxidative stress could precede endothelial dysfunction and insulin resistance in Indian Mauritians with impaired glucose metabolism.  Diabetologia. 2001;  44 706-712
  • 64 Biewenga G P, Haenen G R, Bast A. The Pharmacology of the antioxidant lipoic acid.  Gen Pharmacol. 1997;  29 315-331
  • 65 Packer L, Witt E H, Tritchler H J. Alpha-lipoic acid as a biological antioxidant free.  Radic Biol Med. 1995;  19 227-250
  • 66 Haugaard N, Haugaard E S. Stimulation of glucose utilization by thioctic acid in rat diaphragm incubated in vitro.  Biochem Biophys Acta. 1970;  222 583-586
  • 67 Ramrath S, Tritschler H J, Eckel J. Stimulation of cardiac glucose transport by thioctic acid and insulin.  Horm Metab Res. 1999;  31 632-635
  • 68 Evans J L, Goldfine I D. α-lipoic acid: a multifactorial antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes.  Technol Thr. 2000;  2 401-414
  • 69 Khamaisi M, Potashnik R, Tirosh A, Demshchak E, Rudich A, Tritschler H, Wessel K, Bashan N. Lipoic acid reduces glycemia and increases muscle GLUT4 content in streptozotocin-diabetes rats.  Metabolism. 1997;  46 763-768
  • 70 Fujimoto W Y. The importance of insulin resistance in the pathogenesis of type 2 diabetes mellitus.  Am J Med. 2000;  108 (suppl 6a) 9S-14S

Prof. M. S. Bitar

Dept. of Pharmacology & Toxicology

Faculty of Medicine, Kuwait University, Kuwait ·

Phone: +965 (531) 2300, 6364

Fax: +965 (531) 8454

Email: milad@hsc.kuniv.edu.kw