Abstract
Aims/hypothesis: Short-lasting hyperglycemia results in activation of the transcription factor NF-κB in peripheral blood mononuclear cells. We therefore studied whether the postprandial increase in glucose is sufficient to induce mononuclear NF-κB activation and whether blunting postprandial hyperglycemia with the alpha-glucosidase inhibitor acarbose reduces NF-κB activation.
Methods: 20 patients with type 2 diabetes were included in a double-blind randomized trial receiving 100 mg acarbose or placebo three times a day over a period of eight weeks. Peripheral blood mononuclear cells were isolated before and 120 minutes after a standardized breakfast. NF-κB binding activity was estimated by electrophoretic mobility shift assay and NF-κB-p65; translocation was determined by Western blot.
Results: Eight weeks of treatment with acarbose significantly reduced postprandial hyperglycemia (p = 0.004 when compared to placebo), postprandial mononuclear NF-κB-binding activity (p = 0.045) and nuclear translocation of NF-κB-p65 (p = 0.02).
Conclusion: Reduction of postprandial glucose peak levels by acarbose reduces postprandial mononuclear NF-κB activation.
Key words
Postprandial hyperglycemia · Activation of NF-kappa B · Acarbose · Peripheral mononuclear cells · Type 2 diabetes
References
1
Ceriello A.
Oxidative stress and glycemic regulation.
Metabolism.
2000;
49 (2 Suppl 1)
27-29
2
Ceriello A.
Acute hyperglycemia and oxidative stress generation.
Diabet Med.
1997;
14
S45-S49
3
Ceriello A, Falleti E, Motz E, Taboga C, Tonutti L, Ezsol Z, Gonano F, Bartoli E.
Hyperglycemia-induced circulating ICAM-1 increase in diabetes: the possible role of oxidative stress.
Horm Metab Res.
1998;
30
146-149
4
Ceriello A.
The post-prandial state and cardiovascular disease: relevance to diabetes mellitus.
Diabetes Metab Res Rev.
2000;
16
125-132
5
Ceriello A, Bortolotti N, Motz E, Crescentini A, Lizzio S, Russo A, Tonutti L, Taboga C.
Meal-generated oxidative stress in type 2 diabetic patients.
Diabetes Care.
1998;
21
1529-1533
6
Tessier D, Khalil A, Fulop T.
Effects of an oral glucose challenge on free radicals/antioxidants balance in an older population with type II diabetes.
J Gerontol A Biol Sci Med Sci.
1999;
54
M 541-545
7
Cummings P M, Giddens K, Nassar B A.
Oral glucose loading acutely attenuates endothelium-dependent vasodilatation in healthy adults without diabetes: an effect prevented by vitamins C and E.
J AM Coll Cardiol.
2000;
36
2185-2191
8
Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto T, Kugiyama K, Ogawa H, Yasue H.
Hyperglycemia rapidly suppresses flow-mediated endothelium-dependent vasodilation of brachial artery.
J Am Coll Cardiol.
1999;
34
146-154
9
Shige H, Ishikawa T, Suzukawa M, Ito T, Nakajima K, Higashi K, Ayaori M, Tabata S, Ohsuzu F, Nakamura H.
Endothelium-dependent flow-mediated vasodilation in the postprandial state in type 2 diabetes mellitus.
Am J Cardiol.
1999;
84
1272-1274, A9
10
Graier W F, Posch K, Wascher T C, Kostner G M.
Role of superoxide anions in changes of endothelial vasoactive response during acute hyperglycemia.
Horm Metab Res.
1997;
29
622-626
11
Title L M, Cummings P M, Giddens K, Nassar B A.
Oral glucose loading acutely attenuates endothelium-dependent vasodilation in healthy adults without diabetes: an effect prevented by vitamins C and E.
J Am Coll Cardiol.
2000;
36
2185-2191
12
Hattori Y, Hattori S, Sato N, Kasai K.
High-glucose-induced nuclear factor kappaB activation in vascular smooth muscle cells.
Cardiovasc Res.
2000;
46
188-197
13
Meigs J B, Mittleman M A, Nathan D M, Tofler G H, Singer D E, Murphy-Sheehy P M, Lipinska I, D'Agostino R B, Wilson P W.
Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study.
JAMA.
2000;
283
221-228
14
Evans J L, Goldfine I D, Maddux B A, Grodsky G M.
Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes.
Endocr Rev.
2002;
23
599-622
15
Brownlee M.
Negative consequences of glycation.
Metabolism.
2000;
49 (2 Suppl 1)
9-13
16
Brownlee M.
Biochemistry and molecular cell biology of diabetic complications.
Nature.
2001;
414
813-820
17
Hammes H P, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J, Bierhaus A, Nawroth P, Hannak D, Neumaier M, Bergfeld R, Giardino I, Brownlee M.
Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy.
Nat Med.
2003;
9
294-299
18
Schmidt A M, Yan S D, Stern D M.
The dark side of glucose.
Nat Med.
1995;
1
1002-1004
19
Baeuerle P A, Baltimore D.
NF-kappa B: ten years after.
Cell.
1996;
87
3-20
20
Wautier J L, Wautier M P, Schmidt A M, Anderson G M, Hori O, Zoukourian C, Capron L, Chappey O, Yan S D, Brett J, Guillausseau P-J, Stern DM.
Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications.
Proc Natl Acad Sci U S A.
1994;
91
7742-7746
21
Yan S D, Schmidt A M, Anderson G M, Zhang J, Brett J, Zou Y S, Pinsky D, Stern D.
Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins.
J Biol Chem.
1994;
269
9889-9897
22
Baynes J W, Thorpe S R.
Glycoxidation and lipoxidation in atherogenesis.
Free Radic Biol Med.
2000;
28
1708-1716
23
Schiekofer S, Andrassy M, Chen J, Rudofsky G, Schneider J, Wendt T, Stefan N, Humpert P, Fritsche A, Stumvoll M, Schleicher E, Häring H U, Nawroth P P, Bierhaus A.
Acute hyperglycemia causes intracellular foprmation of CML and activation of ras, p42/44 MAPK, and nuclear factor kappa B in PBMCs.
Diabetes.
2003;
52
621-633
24
King G L, Brownlee M.
The cellular and molecular mechanisms of diabetic complications.
Endocrinol Metab Clin North Am.
1996;
25
255-270
25
Hernández-Presa M A, Bustos C, Ortego M. et al .
Angiotensin-converting enzyme inhibition prevents arterial nuclear factor-κB activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis.
Circulation.
1997;
95
1532-1541
26
Balkau B, Shipley M, Jarnett R J, Pyorala M, Forhan A, Eschwege E.
High blood glucose concentration is a risk factor for mortality in middle-aged nondiabetic men. 20-year follow-up in the Whitehall Study, the Paris Prospective Study, and the Helsinki Policemen Study.
Diabetes Care.
1998;
21
360-367
27
Ceriello A.
The emerging role of post-prandial hyperglycaecimic spikes in the pathogenesis of diabetic complications.
Diabet Med.
1998;
15
188-193
28
DECODE Study Group .
Glucose tolerance and cardiovascular mortality: comparison of the fasting and the 2-hour diagnostic criteria.
Arch Intern Med.
2001;
161
397-404
29
De Vegt F, Dekker J M, Ruhe H G, Stehouwer C D, Nijpels G, Bouter L M, Heine R J.
Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study.
Diabetologia.
1999;
42
926-931
30
Del Prato S.
Metabolic control in Type 2 diabetes: the impact of postprandial glucose.
Curr Opin Endocrinol Diabetes.
1999;
6 (Suppl)
S1-S6
31
Hanefeld M, Fischer S, Julius U, Schulze J, Schwanebeck U, Schmechel H, Ziegelasch H J, Lindner J.
Risk factors for myocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11-year follow-up.
Diabetologia.
1996;
39
1577-1583
32
Shaw J E, Hodge A M, de Courten M, Chitson P, Zimmet P Z.
Isolated post-challenge hyperglycaemia confirmed as a risk factor for mortality.
Diabetologia.
1999;
42
1050-1054
33
Sheetz M J, King G L.
Molecular understanding of hyperglycemia's adverse effects for diabetic complications.
JAMA.
2002;
288
2579-2588
34
Baynes J W.
Role of oxidant stress in development of complications in diabetes.
Diabetes.
1991;
40
405-412
35
Hammes H P.
Pathophysiological mechanisms of diabetic angiopathy.
J Diabetes Complications.
2003;
17 (2 Suppl)
16-9
36
Giugliano D, Ceriello A, Paolisso G.
Oxidative stress and diabetic vascular complications.
Diabetes Care.
1996;
19
257-267
37
Hofmann M A, Schiekofer S, Isermann B, Kanitz M, Henkels M, Joswig M, Treusch A, Morcos M, Weiss T, Borcea V, Abdel K halek , Amiral J, Tritschler H, Ritz E, Wahl P, Ziegler R, Bierhaus A, Nawroth P P.
Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-kappaB.
Diabetologia.
1999;
42
222-232
38
Hofmann M A, Schiekofer S, Kanitz M, Klevesath M S, Joswig M, Lee V, Morcos M, Tritschler H, Ziegler R, Wahl P, Bierhaus A, Nawroth P P.
Insufficient glycemic control increases nuclear factor-kappa B binding activity in peripheral blood mononuclear cells isolated from patients with type 1 diabetes.
Diabetes Care.
1998;
21
1310-1316
39
Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert P M, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt A M, Stern D M, Haring H U, Schleicher E, Nawroth P P.
Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB.
Diabetes.
2001;
50
2792-2808
40
Yerneni K K, Bai W, Khan B V, Medford R M, Natarajan R.
Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells.
Diabetes.
1999;
48
855-864
41
Schiekofer S, Rudofsky G, Andrassy M, Schneider J, Chen J, Isermann B, Kanitz M, Elsenhans S, Heinle H, Balletshofer B, Haring H U, Schleicher E, Nawroth P P, Bierhaus A.
Glimepiride reduces mononuclear activation of the redox-sensitive transcription factor nuclear factor-kappa B.
Diabetes Obes Metab.
2003;
5
251-261
42
Bierhaus A, Chevion S, Chevion M, Quehenberger P, Hofmann M, Illmer T, Luther T, Berentshtein E, Tritschler H, Müller M.
Advanced glycation endproducts (AGEs) induced activation of NF-κB is suppressed by α-lipoic acid in cultured endothelial cells.
Diabetes.
1997;
46
1481-1490
43
Bierhaus A, Zhang Y, Deng Y, Mackman N, Quehenberger P, Haase M, Luther T, Müller M, Böhrer H, Greten J.
Mechanism of the TNF α mediated induction of endothelial tissue factor.
J Biol Chem.
1995;
270
26 419-26 432
44
Bradford M M.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem.
1996;
72
248-254
45
Pahl H L, Baeuerle P A.
Expression of influenza virus hemagglutinin activates the transcription factor NFκB.
J Virol.
1995;
69
1480-1484
46
Fujita N, Furukawa Y, Du J, Itabashi N, Fujisawa G, Okada K, Saito T, Ishibashi S.
Hyperglycemia enhances VSMC proliferation with NF-kappaB activation by angiotensin II and E2F-1 augmentation by growth factors.
Mol Cell Endocrinol.
2002;
192
75-84
47
Guha M, Bai W, Nadler J L, Natarajan R.
Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways.
J Biol Chem.
2000;
275
17 728-17 739
48
Bierhaus A, Wolf J, Andrassy M, Rohleder N, Humpert P M, Petrov D, Ferstl R, von Eynatten M, Wendt T, Rudofsky G, Joswig M, Morcos M, Schwaninger M, McEwen B, Kirschbaum C, Nawroth P P.
A mechanism converting psychosocial stress into mononuclear cell activation.
Proc Natl Acad Sci USA.
2003;
100
1920-1925
49
Bierhaus A, Hemmer C J, Mackman N, Kutob R, Ziegler R, Dietrich M, Nawroth P P.
Antiparasitic treatment of patients with P. falciparum malaria reduces the ability of patient serum to induce tissue factor by decreasing NF-kappa B activation.
Thromb Haemost.
1995;
73
39-48
50
Nawroth P P, Bierhaus A, Vogel G E, Hofmann M A, Zumbach M, Wahl P, Ziegler R.
Nicht enzymatische Glykierung und oxidativer Stress bei chronischen Erkrankungen und Diabetes mellitus.
Med Klinik.
1999;
94
29-38
51
Blanco-Colio L M, Valderrama M, Alvarez-Sala L A, Bustos C, Ortego M, Hernandez-Presa M A, Cancelas P, Gomez-Gerique J, Millan J, Egido J.
Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia.
Circulation.
2000;
102
1020-1026
52
Malaguarnera M, Giugno I, Ruello P, Maugeri D, Pistone G.
Treatment of familial hypertriglyceridaemia with acarbose.
Diabetes Obes Metab.
2000;
2
33-38
53
Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E.
Evidence for an Independent and Cumulative Effect of Postprandial Hypertriglyceridemia and Hyperglycemia on Endothelial Dysfunction and Oxidative Stress Generation Effects of Short- and Long-Term Simvastatin Treatment.
Circulation.
2002;
106
1211-1218
54
Carrascosa J M, Molero J C, Fermin Y, Martinez C, Andres A, Satrustegui J.
Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats.
Diabetes Obes Metab.
2001;
3
240-248
55
Salman S, Salman F, Satman I, Yilmaz Y, Ozer E, Sengul A, Demirel H O, Karsidag K, Dinccag N, Yilmaz M T.
Comparison of acarbose and gliclazide as first-line agents in patients with type 2 diabetes.
Curr Med Res Opin.
2001;
16
296-306
56
Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Esposito K, Giugliano D.
Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment.
Diabetes.
2004;
53
701-710
Angelika Bierhaus, Ph.D.
Medizinische Klinik I der Universität Heidelberg, Otto-Meyerhof-Zentrum ·
Im Neuenheimer Feld 350 · 69120 Heidelberg · Germany
Phone: +49 (6221) 564752
Fax: +49 (6221) 564754 ·
Email: angelika_bierhaus@med.uni-heidelberg.de