Aktuelle Dermatologie 2005; 31(3): 109-116
DOI: 10.1055/s-2004-826053
Jubiläum
© Georg Thieme Verlag KG Stuttgart · New York

Neues aus der Haarforschung: Einfluss von Prolaktin, Retinoiden und Transforming Growth Factor-β auf das Haarwachstum

New Findings in the Treatment of Alopecia: The Influence of Prolactin, Retinoids and Transforming Growth Factor-β on Hair GrowthKerstin  Foitzik1
  • 1Hautklinik, Universitätsklinik Hamburg-Eppendorf
Further Information

Publication History

Publication Date:
14 February 2005 (online)

Zusammenfassung

Es hat sich kürzlich gezeigt, dass neben Androgenen und Östrogenen auch das Hormon Prolaktin an der Entwicklung der androgenetischen Alopezie maßgeblich beteiligt ist. Wir konnten zeigen, dass Prolaktin Haarzyklus-abhängig in der Maushaut exprimiert wird und in murinen Maushautorgankulturen in der Lage ist, vorzeitiges Katagen zu induzieren. Auch in isolierten humanen Anagen- und Katagen-Haarfollikeln wird Prolaktin und dessen Rezeptor exprimiert, und eine Behandlung mit Prolaktin über 6 Tage resultiert in ein vorzeitiges Eintreten der Haarfollikel in das Katagenstadium mit gleichzeitigem Anstieg von apoptotischen und einer verminderten Anzahl proliferierender, follikulärer Keratinozyten. Prolaktin wird - entgegen bisheriger Publikation - im Haarfollikel selbst produziert und übt lokal seine Funktionen aus. Verschiedene, einander beeinflussende Wachstumsfaktoren sind an der Regulation des Haarzyklus beteiligt. Auch TGF-β spielt sowohl für die Haarfollikelmorphogenese als auch für den Haarzyklus eine maßgebliche Rolle. So induziert TGF-β2 während der embryonalen Entwicklung Haarfollikelanlagen und TGF-β2 knock-out-Mäuse zeigen eine verzögerte Haarfollikelmorphogenese mit einer verminderten Anzahl an Haarfollikeln. TGF-β1 dagegen inhibiert die Haarfollikelmorphogenese. Während des Haarzyklus haben TGF-β1 und TGF-β2 hemmende Effekte auf das Haarwachstum und können Katagen in humanen Haarfollikeln induzieren. Zusätzlich hat sich gezeigt, dass Retinoid induzierter Haarausfall zumindest partiell durch TGF-β2 vermittelt ist, der durch die Gabe von TGF-β-Antikörpern signifikant vermindert werden kann. Zusammenfassend motivieren diese Daten, sowohl Prolaktin- als auch TGF-β-Rezeptor Antagonisten als zukünftige Therapeutika in der Behandlung der androgenetischen Alopezie weiter zu untersuchen.

Abstract

It has recently been recognized, that next to androgens and estrogens also the pituitary hormone prolactin is involved in the regulation of androgenetic alopecia. We have shown that prolactin is expressed hair cycle dependent in murine skin and is capable of premature catagen induction in murine skin organ cultures. Prolactin and the prolactin receptor are expressed in isolated human hair follicles and daily treatment with prolactin for 6 days results in premature catagen induction, inhibition of hair shaft production, induction of apoptosis and decrease of proliferation in follicular keratinocytes. Prolactin is - contrary to other publications - produced in the human hair follicle and exerts its effects locally on the hair cycle. A cascade of distinct growth factors is necessary for the regulation of the hair cycle. Also TGF-β plays an important role during hair follicle morphogenesis and cycling. During embryogenesis TGF-β2 induces hair follicle plugs and TGF-β2 knock-out mice show a delayed hair follicle morphogenesis along with a reduced number of hair follicles. Unlike TGF-β2- TGF-β1 inhibits hair follicle morphogenesis. TGF-β1 and 2 inhibit hair growth and are able to induce catagen in human hair follicles. In addition, retinoid induced hair loss is at least partially mediated by TGF-β2, and can be significantly reduced by TGF-β antibodies. In summary these data motivate to further investigate prolactin and TGF-β receptor antagonists as possible therapeutics in the management of androgenetic alopecia.

Literatur

  • 1 Stenn K S, Paus R. Controls of hair follicle cycling.  Physiological Reviews. 2001;  81 449-494
  • 2 Arca E, Acikgoz G, Tastan H B, Kose O, Kurumlu Z. An open, randomized, comparative study of oral finasteride and 5 % topical minoxidil in male androgenetic alopecia.  Dermatology.. 2004;  209 117-25
  • 3 Conrad F, Ohnemus U, Bodo E, Bettermann A, Paus R. Estrogens and human scalp hair growth-still more questions than answers.  J Invest Dermatol.. 2004;  122 840-842
  • 4 Freeman M E, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion.  Physiological Reviews. 2000;  80 1523-1631
  • 5 Paus R. Does prolactin play a role in skin biology and pathology?.  Medical Hypotheses. 1991;  36 33-42
  • 6 Schmidt J B. Hormonal basis of male and female androgenic alopecia: clinical relevance.  Skin Pharmacology. 1994;  7 61-66
  • 7 Kelly P A, Binart N, Freemark M. et al . Prolactin receptor signal transduction pathways and actions determined in prolactin receptor knockout mice.  Biochemical Society Transactions. 2001;  29 48-52
  • 8 Nixon A J, Ford C A, Wildermoth J E. et al . Regulation of prolactin receptor expression in ovine skin in relation to circulating prolactin and wool follicle growth status.  J Endocrinol. 2002;  172 605-614
  • 9 Craven A J, Ormandy C J, Robertson F G. et al . Prolactin signaling influences the timing mechanism of the hair follicle: analysis of hair growth cycles in prolactin receptor knockout mice.  Endocrinology. 2001;  142 2533-2539
  • 10 Foitzik K, Krause K, Nixon A J. et al . Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen. Am J Pathol.  2003. May;  162 1611-1612
  • 11 Poumay Y, Jolivet G, Pittelkow M R. et al . Human epidermal keratinocytes upregulate expression of the prolactin receptor after the onset of terminal differentiation, but do not respond to prolactin.  Archives of Biochemistry and Biophysics. 1999;  364 247-253
  • 12 Slominski A, Malarkey W B, Wortsman J, Asa S L, Carlson A. Human skin expresses growth hormone but not the prolactin gene.  J Lab Clin Med. 2000;  136 476-481
  • 13 Roberts A B, Wakefield L M. The two faces of transforming growth factor beta in carcinogenesis.  Proc Natl Acad Sci USA. 2003 Jul 22;  100 8621-8623. Epub 2003 Jul 14.
  • 14 Li J, Foitzik K, Calautti E, Baden H, Doetschman T, Dotto G P. TGF-beta3, but not TGF-beta1, protects keratinocytes against 12-O- tetradecanoylphorbol-13-acetate-induced cell death in vitro and in vivo.  J Biol Chem 1999 Feb. 12;  274 4213-4219
  • 15 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.  Cell 2003 Jun. 13;  113 685-700
  • 16 Hardy M H. The secret life of the hair follicle.  Trends Genet. 1992;  8 55-61
  • 17 Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis.  J Cell Sci. 2003;  16 1647-1648
  • 18 St-Jacques B, Dassule H R, Karavanova I. et al . Sonic hedgehog signaling is essential for hair development.  Curr Biol. 1998;  24 1058-1068
  • 19 Botchkarev V A, Paus R. Molecular biology of hair morphogenesis: development and cycling.  J Exp Zoolog Part B Mol Dev Evol. 2003;  15 164-180
  • 20 Paus R, Foitzik K, Welker P. et al . Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling.  J Invest Dermatol. 1997;  109 518-526
  • 21 Welker P, Foitzik K, Bulfone-Paus S, Henz B M, Paus R. Hair cycle-dependent changes in the gene expression and protein content of transforming factor beta 1 and beta 3 in murine skin.  Arch Dermatol Res. 1997;  289 554-557
  • 22 Pelton R W, Saxena B, Jones M, Moses H L, Gold L I. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development.  J Cell Biol. 1991;  115 1091-1105
  • 23 Foitzik K, Paus R, Doetschman T, Dotto G P. The TGF-beta2 isoform is both a required and sufficient inducer of murine hair follicle morphogenesis.  Dev Biol. 1999;  212 278-289
  • 24 Sellheyer K, Bickenbach J R, Rothnagel J A, Bundman D, Longley M A, Krieg T, Roche N S, Roberts A B. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice.  Proc Natl Acad Sci USA. 1993;  1 5237-5241
  • 25 Foitzik K, Lindner G, Mueller-Roever S. et al . Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo.  FASEB Journal. 2000;  14 752-760
  • 26 Soma T, Tsuji Y, Hibino T. Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle.  J Invest Dermatol. 2002;  118 993-997
  • 27 Philpott M P, Sanders D, Westgate G E, Kealey T. Human hair growth in vitro: a model for the study of hair follicle biology.  J Dermatol Sci. 1994;  7 Suppl S55-72
  • 28 Marill J, Idres N, Capron C C. et al . Retinoic Acid metabolism and mechanism of action: a review.  Curr Drug Metab. 2003;  4 1-10
  • 29 Klaholz B P, Mitschler A, Moras D. Structural basis for isotype selectivity of the human retinoic acid nuclear receptor.  J Mol Biol.. 2000;  302 155-170
  • 30 Foitzik K, Spexard T, Nakamura M. et al . Towards dissecting the pathogenesis of retinoid-induced hair loss: all-trans retinoic acid induces premature hair follicle regression (catagen) by upregulation of TGF-β2 in the dermal papilla.  J Invest Dermatol. 2005, in press; 
  • 31 Krause K, Paus R, Nakamura M, Foitzik K. Expression of prolactin mRNA and protein in human skin and its role in catagen control of human hair fallicles.   Arch Dermatol Res. 2002;  294 : 65 P201

Dr. med. Kerstin Foitzik

Fachärztin für Dermatologie und Venerologie · Hautklinik, Universitätsklinik Eppendorf

Martinistr. 52 · 20246 Hamburg

Email: k.foitzik@uke.uni-hamburg.de

    >