Psychiatr Prax 2004; 31: 194-199
DOI: 10.1055/s-2004-828480
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Neue Ansätze in der Schizophrenieforschung: Die Bedeutung von neuropsychologischen Endophänotypen und deren möglicher Nutzen

New Strategies in Schizophrenia: Impact of EndophentotypesCarolin  Opgen-Rhein1 , Andres  Neuhaus1 , Carsten  Urbanek1 , Michael  Dettling1
  • 1Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie, Charité - Universitätsmedizin Berlin
Further Information

Publication History

Publication Date:
08 December 2004 (online)

Zusammenfassung

Die Ätiologie und die einzelnen genetischen Determinanten der Schizophrenie sind trotz eindeutigen Nachweises einer hohen Heritabilität nach wie vor ungeklärt. Wahrscheinliche Erklärung hierfür ist zum einen die Komplexität des genetischen Hintergrundes und zum anderen die deutliche Heterogenität des klinischen Erscheinungsbildes dieser Erkrankung. Eine neue Forschungsstrategie im Rahmen der Schizophrenieforschung besteht darin, klinisch enger definierte Merkmale, so genannte Endophänotypen zu identifizieren, um die Kandidatengensuche zu optimieren. Als Endophänotypen bieten sich die deutlich defizitären kognitiven Funktionen schizophrener Patienten an. Diese zeigen eine enge pathogenetische Beziehung zu den neurobiologischen Grundlagen der Erkrankung und klinisch besonders ungünstige Auswirkungen auf die psychosoziale Funktionsfähigkeit Erkrankter. Die Identifizierung dieser kognitiven Defizite erfolgt - auch in Kombination mit neurophysiologischen Messmethoden - durch neuropsychologische Testverfahren. Die Ausprägung bzw. Beeinflussung kognitiver Defizite wird in den nächsten Jahren somit im Fokus sowohl genetischer Untersuchungen als auch psychosozialer und psychopharmakologischer Therapiestrategien stehen, mit dem langfristigen Ziel einer verbesserten psychosozialen Integration der Betroffenen.

Abstract

Despite the compelling evidence for a strong heritability of schizophrenia, the aetiology and genetic underpinnings of this disabling disease still remain unclear. Reasonable explanations for current problems in identifying candidate genes for schizophrenia are the complexity of its genetic background as well as the heterogeneity of the clinical appearance of this disease. For a higher efficiency in genetic investigations, a new approach came up which defines clinically distinct traits much more precisely: the so called endophenotype concept. Schizophrenic patients suffer from marked cognitive deficits. These deficits are closely related to the neurobiological basis of the disease, exhibit a high negative impact on clinical outcome, and may serve as endophenotypes for genetic studies. Identification of neurocognitive endopenotypes is usually performed in terms of a combination of neuropsychological tests and neurophysiological measurements. Thus, future genetic investigations as well as psychosocial and psychopharmacological therapy strategies will focus on the severity and potential therapeutic modification of cognitive deficits in order to improve psychosocial reintegration of schizophrenic patients in the long-term.

Literatur

  • 1 Angermeyer M C, Matschinger H. The stigma of mental illness. Effects of labelling on public attitudes towards people with mental disorders.  Acta Psychiatr Scand. 2003;  108 304-309
  • 2 Church S M, Cotter D, Bramon E, Murray R M. Does schizophrenia result from developmental or degenerative effects?.  J Neural Transm. 2002;  63 129-147
  • 3 Keefe R S, Silva S G, Perkins D O, Lieberman J A. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia. A review and meta-analysis.  Schizophr Bull. 1999;  25 201-222
  • 4 Meltzer H Y. Atypical antipsychotic drugs. Chapter 108. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: The fourth generation of progress. New York; Raven 1995
  • 5 Mc Guffin P, Owen M J, Farmer A E. Genetic basis of schizophrenia.  Lancet. 1995;  346 678-682
  • 6 Tsuang M T, Gilbertson M W, Faraone S V. The genetics of schizophrenia. Current knowledge and future directions.  Schizophr Res. 1991;  4 157-171
  • 7 Risch N. Linkage strategies for genetically complex traits. The power of affected relative pairs.  Am J Hum Gen. 1990;  46 229-241
  • 8 Kendler K S, Diehl S R. The genetics of schizophrenia: a current, genetic-epidemiological perspective.  Schizophr Bull. 1993;  19 261-285
  • 9 Gottesmann I I, Gould T D. The endophenotype concept in psychiatry: etymology and strategic intentions.  Am J Psychiatry. 2003;  160 636-645
  • 10 Gasperoni T l, Ekelund J, Huttunen M, Palmer C GS, Zuulio-Henrikson A, Lönnqvist J, Kaprio J, Peltonen L, Cannon T D. Genetic linkage and association between chromosome 1q and working memory function in schizophrenia.  Am J Med Gen Patr B (Neuropsychiatric Genetics). 2003;  116B 8-16
  • 11 Sarfati Y, Hardy-Bayle M C. Could cognitive vulnerability identify high-risk subjects for schizophrenia?.  Am J Med Gen. 2002;  114 893-897
  • 12 Sandbrink R, Hartmann T, Masters C L, Beyreuther K. Genes contributing to Alzheimer's disease.  Mol Psychiatry. 1996;  1 27-40
  • 13 Moises H WM. Human genome data analysed by an evolutionary method suggests a decrease in protein-synthesis rate as cause for schizophrenia and an increase as antipsychotic mechanism. ArXiv.org e-Print archive 2001 (http://xxx.arxiv.cornell.edu/abs/cond-mat/0110189)
  • 14 O'Donovan M C, Williams N M, Owen M J. Recent advances in the genetics of schizophrenia. HMG Advance Access. Oxford; University Press 2003
  • 15 Moises H W, Zoeger T, Gottesman I I. The glial growths factors deficiency and synaptic destabilization hypothesis of schizophrenia.  BMC Psychiatry. 2002;  2 8
  • 16 Araque A, Parpura V, Sanzgiri R P, Haydon P G. Tripartite synapses: glia, the unacknowledged partner.  Trends Neurosci. 1999;  22 208-215
  • 17 Harrison P J, Owen M J. Genes for schizophrenia? Recent findings and their pathophysiological implications.  Lancet. 2003;  361 417-419
  • 18 Cadenhead K S, Braff D L. Endophenotyping schizotypy: a prelude to genetic studies within the schizophrenia spectrum.  Schizophr Res. 2002;  54 47-57
  • 19 Fan J, McCandliss B D, Sommer T, Raz A, Posner M I. Testing the efficiency and independence of attentional networks.  J Cognitive Neurosci. 2002;  14 340-347
  • 20 Ungerleider L G, Courtney S M, Haxby J V. A neural system for human visual working memory.  Proc Natl Acad Sci USA. 1998 Feb 3;  95 883-890
  • 21 Posner M I, DiGirolamo G J, Fernandez-Duque D. Brain mechanisms of cognitive skills.  Conscious Cogn. 1997;  6 267-290
  • 22 Fan J, Wu Y, Fossella G A, Posner M I. Assessing the heritability of attentional networks.  BMC Neuroscience. 2001;  2 14
  • 23 Green M F. What are the functional consequences of neurocognitive deficits in schizophrenia?.  Am J Psychiatry. 1996;  153 321-330
  • 24 Heaton R K, Gladsjo J A, Palmer B W, Kuck J, Marcotte T D, Jeste D V. Stability and course of neuropsychological deficits in schizophrenia.  Arch Gen Psychiat. 2001;  58 24-32
  • 25 Adler L E, Pachtman E, Franks R D, Pecevich M, Waldo M C, Freedman R. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia.  Biol Psychiatry. 1982;  17 639-654
  • 26 Braff D L, Geyer M A. Sensorimotor gating and schizophrenia. Human and animal model studies.  Arch Gen Psychiatry. 1990;  47 181-188
  • 27 Clementz B A, Geyer M A, Braff D L. Poor P50 suppression among schizophrenia patients and their first-degree biological relatives.  Am J Psychiatry. 1998;  155 1691-1694
  • 28 Cadenhead K S, Light G A, Geyer M A, Braff D L. Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder.  Am J Psychiatry. 2000;  157 55-59
  • 29 Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Polymeropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo M C, Reimherr F, Wender P, Yaw J, Young D A, Breese C R, Adams C, Patterson D, Adler L E, Kruglyak L, Leonard S, Byerley W. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus.  Proc Natl Acad Sci USA. 1997;  94 587-592
  • 30 Houy E, Raux G, Thibaut F, Belmont A, Demily C, Allio G, Haouzir S, Fouldrin G, Petit M, Frebourg T, Campion D. The promoter - 194 C polymorphism of the nicotinic alpha 7 receptor gene has a protective effect against the P50 sensory gating deficit.  Mol Psychiatry. 2004;  9 320-322
  • 31 Umbricht D, Koller R, Schmid L, Skrabo A, Grubel C, Huber T, Stassen H. How specific are deficits in mismatch negativity generation to schizophrenia?.  Biol Psychiatry. 2003;  53 1120-1131
  • 32 Javitt D C, Steinschneider M, Schröder C E, Arezzo J C. Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: implications for schizophrenia.  Proc Natl Acad Sci USA. 1996;  93 11962-11967
  • 33 Turetsky B I, Colbath E A, Gur R E. P300 subcomponent abnormalities in schizophrenia: I. Physiological evidence for gender and subtype specific differences in regional pathology.  Biol Psychiatry. 1998;  43 84-96
  • 34 Roxborough H, Muir W J, Blackwood D H, Walker M T, Blackburn I M. Neuropsychological and P300 abnormalities in schizophrenics and their relatives.  Psychol Med. 1993;  23 305-314
  • 35 Salisbury D F, Voglmaier M M, Seidman L J, McCarley R W. Topographic abnormalities of P3 in schizotypal personality disorder.  Biol Psychiatry. 1996;  40 165-172
  • 36 Egan M F, Goldberg T E, Kolachana B S, Callicott J H, Mazzanti C M, Straub R E, Goldman D, Weinberger D R. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia.  Proc Natl Acad Sci USA. 2001;  98 6917-6922
  • 37 Didriksen M. Effects of antipsychotics on cognitive behaviour in rats using the delayed non-match to position paradigm.  Eur J Pharmacol. 1995;  281 241-50
  • 38 Baddeley A. The fractionation of working memory.  Proc Natl Acad Sci USA. 1996;  93 13468-13472
  • 39 Karlsson P L, Smith K. Lack of apparent antipsychotic effect of the D1-dopamine receptor antagonist SCH39166 in acutely ill schizophrenic patients.  Psychopharmacology (Berl). 1995;  121 309-316
  • 40 Cai J X, Arnsten A F. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys.  J Pharmacol Exp Ther. 1997;  283 183-189
  • 41 Florijn W J, Tarazi F I. Dopamine receptor subtypes: differential regulation after 8 months treatment with antipsychotic drugs.  J Pharmacol Exp Ther. 1997;  280 561-569
  • 42 Lidow M S, Elsworth J D. Down-regulation of the D1 and D5 dopamine receptors in the primate prefrontal cortex by chronic treatment with antipsychotic drugs.  J Pharmacol Exp Ther. 1997;  281 597-603
  • 43 Heinrichs R W, Zakzanis A A. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence.  Neuropsychology . 1998;  12 426-445
  • 44 Castner S A, Williams G V. Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation [see comments].  Science. 2000;  287 2020-2022
  • 45 Muller U DY, Cramon R von. D1- versus D2-receptor modulation of visuospatial working memory in humans.  J Neurosci. 1998;  18 2720-2728

Dr. med. Carolin Opgen-Rhein

Forschungsgruppe Schizophrenie am CBF · Klinik und Hochschulambulanz für Psychiatrie und Psychotherapie Charité · Universitätsmedizin Berlin · Campus Benjamin Franklin

Eschenallee 3

14050 Berlin

Email: carolin.opgen-rhein@charite.de