References
<A NAME="RY10103ST-1">1</A>
Pettit GR.
Inoue M.
Kamano Y.
Herald DL.
Arm C.
Dufresne C.
Christie ND.
Schmidt JM.
Doubek DL.
Krupta TS.
J. Am. Chem. Soc.
1988,
110:
2006
<A NAME="RY10103ST-2">2</A>
Fukuzawa S.
Matsunaga S.
Fusetani N.
J. Org. Chem.
1994,
59:
6164
<A NAME="RY10103ST-3">3</A>
Paull KD.
Shoemaker RH.
Hodes L.
Monks A.
Scudiero DA.
Rubinstein L.
Plowman J.
Boyd MR.
J. Natl. Cancer Inst.
1989,
81:
1088
<A NAME="RY10103ST-4">4</A>
Ganesan A.
Studies in Nat. Prod. Chem.
1996,
18:
875
<A NAME="RY10103ST-5">5</A>
Habermehl G.
Hamman PE.
Krebs HC.
In Naturstoffchemie
Springer;
Berlin:
2002.
p.58
<A NAME="RY10103ST-6">6</A>
Flemming S.
Dissertation
University of Hannover;
Germany:
1991.
<A NAME="RY10103ST-7">7</A>
Guo C.
Lacour TG.
Fuchs PL.
Bioorg. Med. Chem. Lett.
1999,
9:
419
<A NAME="RY10103ST-8">8</A>
Jautelat R.
Müller-Fahrnow A.
Winterfeldt E.
Chem.-Eur. J.
1992,
5:
1226
<A NAME="RY10103ST-9">9</A>
Drögemüller M.
Jautelat R.
Winterfeldt E.
Angew. Chem.
1996,
108:
1669
<A NAME="RY10103ST-10">10</A>
Bladon P.
Mc Meekin W.
Williams IA.
J. Chem. Soc.
1963,
5727
<A NAME="RY10103ST-11">11</A>
Welzel P.
Janssen B.
Duddeck H.
Liebigs Ann. Chem.
1981,
546
<A NAME="RY10103ST-12">12</A>
Chinn LJ.
J. Org. Chem.
1967,
32:
687
<A NAME="RY10103ST-13">13</A>
Hamann PE.
Habermehl GG.
Z. Naturforsch.
1987,
426:
781
<A NAME="RY10103ST-14">14</A>
Jautelat R.
Winterfeldt E.
Müller-Fahrnow A.
J. Prakt. Chem.
1996,
338:
695
Interestingly, even three new methods that were described only very recently are not
easily adopted for steroid precursors. See:
<A NAME="RY10103ST-15A">15a</A>
Emoto T.
Kubosaki N.
Yamagiwa Y.
Kamikawa T.
Tetrahedron Lett.
2000,
41:
355
<A NAME="RY10103ST-15B">15b</A>
Lenoir I.
Smith ML.
J. Chem. Soc., Perkin Trans. 1
2000,
641
<A NAME="RY10103ST-15C">15c</A>
Marjo CE.
Bishop R.
Craig DC.
Scudder ML.
Eur. J. Org. Chem.
2001,
863
<A NAME="RY10103ST-16">16</A>
Kramer A.
Ullmann U.
Winterfeldt E.
J. Chem. Soc., Perkin Trans. 1
1993,
2865
<A NAME="RY10103ST-17">17</A>
Jeong JU.
Sutton SC.
Kim S.
Fuchs PL.
J. Am. Chem. Soc.
1995,
117:
10157
<A NAME="RY10103ST-18">18</A>
Heathcock CH.
Smith SC.
J. Org. Chem.
1992,
57:
6379
<A NAME="RY10103ST-19">19</A>
Heathcock CH.
Smith SC.
J. Org. Chem.
1994,
59:
6828
<A NAME="RY10103ST-20">20</A>
Fuchs PL.
LaCour TG.
Guo C.
Bhandaru S.
Boyd MR.
J. Am. Chem. Soc.
1998,
120:
692
<A NAME="RY10103ST-21">21</A>
Gryszkiewicz-Wojtkielewicz A.
Jastrzebska I.
Morzycki JW.
Romanowska DB.
Curr. Org. Chem.
2003,
7:
1257
<A NAME="RY10103ST-22">22</A>
Drögemüller M.
Flessner T.
Jautelat R.
Scholz U.
Winterfeldt E.
Eur. J. Org. Chem.
1998,
2811
<A NAME="RY10103ST-23">23</A>
Wiemann MJ.
Vinot N.
Villadary M.
Bull. Soc. Chim. Fr.
1965,
3476
<A NAME="RY10103ST-24">24</A>
Scholz U.
Winterfeldt E.
Nat. Prod. Rep.
2000,
17:
349
<A NAME="RY10103ST-25">25</A>
The low yield observed may well be due to methanolysis of the O-acetate under the reaction conditions.
<A NAME="RY10103ST-26">26</A>
It is mentioned in passing that the well-known oxidative degradation of the furan
ring
[28]
to a carboxylic acid could lead to pyrazine bis-carboxylic acids and derivatives thereof.
<A NAME="RY10103ST-27">27</A>
Reaction Procedure to Form Nonsymmetric Pyrazine 29: Enaminoketone 13
9 (80 mg, 0.18 mmol) and NH4OAc (35 mg, 0.45 mmol) were dissolved in moist MeOH (5 mL, <0.1% H2O) and refluxed for 30 min. A solution of α-hydroxyketone 28 (80 mg, 0.18 mmol) in CH2Cl2 (0.6 mL) was added and the resulting suspension was refluxed for additional 90 min.
The mixture was quenched with H2O, extracted with CH2Cl2, and the organic layer was washed with brine and dried over MgSO4. After removal of the solvent, the residue was purified by column chromatography
on silica gel to give 29 (43 mg, 28%) as a white solid. 1H NMR (400 MHz, CDCl3): δ = 5.48 (s br, 1 H), 4.78 (dd, J = 7.9 Hz, 2.0 Hz, 1 H), 4.40-4.34 (m, 1 H), 3.56-3.47 (m br, 2 H), 3.44-3.33 (m,
2 H), 1.33 (s, 3 H), 1.09 (s, 3 H), 1.07 (d, J = 6.9 Hz, 3 H), 1.05 (d, J = 6.9 Hz, 3 H), 0.92 (s, 3 H), 0.89 (s, 3 H), 0.81 (d, J = 6.1 Hz, 3 H), 0.79 (d, J = 6.1 Hz, 3 H). 13C NMR (100 MHz, DEPT, CDCl3): δ = 212.88 (s), 210.61 (s), 154.27 (s), 148.52 (s), 148.33 (s), 148.27 (s), 148.09
(s), 121.54 (d), 109.28 (s), 107.04 (s), 83.92 (d), 79.13 (d), 67.10 (t), 66.89 (t),
62.27 (s), 55.65 (d), 55.01 (s), 54.79 (d), 53.53 (d), 53.08 (d), 49.73 (d), 45.25
(t), 45.11 (t), 44.19 (d), 42.22 (d), 41.59 (d), 41.23 (d), 37.62 (t), 37.18 (t),
36.34 (s), 36.12 (s), 35.28 (t), 35.22 (t), 34.18 (d), 33.92 (d), 31.42 (t), 31.24
(t), 31.17 (2 t), 30.30 (d), 30.18 (d), 29.69 (t), 29.12 (t), 28.78 (t), 28.08 (t),
27.86 (t), 20.73 (q), 17.15 (q), 17.13 (q), 15.92 (q), 13.76 (q), 13.22 (q), 11.69
(q), 11.47 (q). MS-FAB (NBA matrix): m/z (%) = 846 (100)[M+], 828 (19), 732 (20), 154 (33) [NBA matrix].
<A NAME="RY10103ST-28">28</A>
Doyle TW.
Martel A.
Luh BY.
Can. J. Chem.
1977,
55:
2708