Abstract
An in situ generated Zn complex of salen ligand 4 was found to serve as an efficient catalyst for asymmetric addition reaction of an alkynylzinc reagent to various ketones. For example, addition of phenylacetylene to 3,3-dimethyl-2-butanone using the Zn complex as catalyst showed enantioselectivity as high as 91% ee.
Key words
Zn(salen) complex - asymmetric catalysis - asymmetric alkynylation - ketone - tertiary propargylic alcohol
References
1a
Soai K.
Niwa S.
Chem. Rev.
1992,
92:
833
1b
Pu L.
Yu H.-B.
Chem. Rev.
2001,
101:
757
1c
Pu L.
Tetrahedron
2003,
59:
9873
2a
Frantz DE.
Fässler R.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
1806
2b
Boyall D.
López F.
Sasaki H.
Frantz DE.
Carreira EM.
Org. Lett.
2000,
2:
4233
2c
Frantz DE.
Fässler R.
Tomooka CS.
Carreira EM.
Acc. Chem. Soc.
2000,
33:
373
2d
Bode JW.
Carreira EM.
J. Am Chem. Soc.
2001,
123:
3611
2e
Anad NK.
Carreira EM.
J. Am. Chem. Soc.
2001,
123:
9687
3a
Lu G.
Li X.
Chan WL.
Chan ASC.
Chem. Commun.
2002,
172
3b
Li X.
Lu G.
Kwok WH.
Chan ASC.
J. Am. Chem. Soc.
2002,
124:
12636
3c
Gao G.
Moore D.
Xie R.-G.
Pu L.
Org. Lett.
2002,
4:
4143
3d
Xu M.-H.
Pu L.
Org. Lett.
2002,
4:
4555
4
Ramón DJ.
Yus M.
Angew. Chem. Int. Ed.
2004,
43:
284
For the highly enantioselective alkynylation of reactive ketone, see:
5a
Jiang B.
Chen Z.
Tang X.
Org. Lett.
2002,
4:
3451
5b
Tan L.
Chen C.
Tillyer RD.
Grabowski EJJ.
Reider PJ.
Angew. Chem. Int. Ed.
1999,
38:
711
6
Cozzi PG.
Angew. Chem. Int. Ed.
2003,
42:
2895
7a For asymmetric diethylzinc addition using Zn(salen) complex as catalyst, see: Cozzi PG.
Papa A.
Umani-Ronchi A.
Tetrahedron Lett.
1996,
37:
4613
7b Also see: DiMauro EF.
Kozlowski MC.
Org. Lett.
2001,
3:
3053
7c For X-ray structure of Zr(salen) complex, see: Morris GA.
Zhou H.
Stern CL.
Nguyen ST.
Inorg. Chem.
2001,
40:
3222
8
Lu G.
Li X.
Jia X.
Chan WL.
Chan ASC.
Angew. Chem. Int. Ed.
2003,
42:
5057
For asymmetric addition reactions of diaryl- or dialkylzinc to ketones, see:
9a
Dosa PI.
Fu GC.
J. Am. Chem. Soc.
1998,
120:
445
9b
Ramón DJ.
Yus M.
Tetrahedron
1998,
54:
5651
9c
Garcia C.
LaRochelle LK.
Walsh PJ.
J. Am Chem. Soc.
2002,
124:
10970
9d
DiMauro EF.
Kozlowski MC.
J. Am. Chem. Soc.
2002,
124:
12668
9e
Funabashi K.
Jachmann M.
Kanai M.
Shibasaki M.
Angew. Chem. Int. Ed.
2003,
42:
5489
For recent reviews, see:
10a
Katsuki T.
Synlett
2003,
281
10b
Ito YN.
Katsuki T.
Bull. Chem. Soc. Jpn.
1999,
72:
603
11
Li Z.-B.
Pu L.
Org. Lett.
2004,
6:
1065
12 Zn(salen) complexes bearing a Lewis basic substituent at C3 and C3′ has been prepared and used as the catalysts for addition of alkynylzinc to carbonyl compounds (ref.
[7b]
[9d]
).
13
Katsuki T.
Adv. Synth. Catal.
2002,
34:
131
References on metallosalens bearing a propylenediamine unit, see:
14a
Kasahara R.
Tsuchimoto M.
Ohba S.
Nakajima K.
Ishida H.
Kojima M.
Inorg. Chem.
1996,
35:
7661
14b
Bermejo MR.
Fondo M.
GarciDeibe A.
Rey M.
Sanmartin J.
Sousa A.
Watkinson M.
Polyhedron
1996,
15:
4185
14c
van Bommel KJC.
Verboom W.
Kooijman H.
Spek AL.
Reinhoudt DN.
Inorg. Chem.
1998,
37:
4197
14d
Tsuchimoto M.
Kasahara R.
Nakajima K.
Kojima M.
Ohba S.
Polyhedron
1999,
18:
3035
15 Typical experimental procedure is exemplified with the reaction of phenylacetylene and 3,3-dimethyl-2-butanone using 4 as the chiral ligand: Dimethylzinc (2.0 M solution in toluene, 150 µL) and phenylacetylene (32.9 µL, 0.3 mmol) were dissolved in a mixture of CH2Cl2 and toluene (300 µL/150 µL) under nitrogen atmosphere, and the solution was stirred for 1 h at r.t. Then, ligand 4 was added to the mixture and stirred for another 1 h. To this mixture was added 3,3-dimethyl-2-butanone (12.5 µL, 0.1 mmol) and the mixture was stirred for 2 d. The reaction mixture was quenched by addition of water (2 drops), diluted with Et2O, and passed through a pad of Celite and Na2SO4. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (hexane-EtOAc = 19:1) to give the corresponding alcohol (15.2 mg, 75%). The enantiomeric excess was determined to be 91% ee by HPLC analysis (Daicel Chiralcel OD-H; hexane-i-PrOH = 49:1).
Enantiomeric excesses of the products were determined by HPLC analysis under the following conditions:
16a Daicel Chiralcel OD-H, hexane-i-PrOH = 24:1.
16b Daicel Chiralcel OD-H, hexane-i-PrOH = 19:1.
16c Daicel Chiralpak AD-H, hexane-i-PrOH = 19:1.
17
Hashihayata T.
Punniyamurthy T.
Irie R.
Katsuki T.
Akita M.
Moro-oka Y.
Tetrahedron
1999,
55:
14599