References
1a
Dolling UH.
Davis P.
Grabowski EJJ.
J. Am. Chem. Soc.
1984,
106:
446
1b
Maruoka K.
Ooi T.
Chem. Rev.
2003,
103:
3013
1c
Lygo B.
Andrews BI.
Acc. Chem. Res.
2004,
37: in press
2a
Keller EK.
Phase-Transfer Reactions
George Thieme Verlag;
Stuttgart:
1987.
2b
Makosza M.
Fedorynski M.
Adv. Catal.
1987,
35:
375
2c
Goldberg Y.
Phase Transfer Catalysis. Selected Problems and Applications
Gordon and Breach;
Philadelphia PA:
1992.
2d
Dehmlow EV.
Dehmlow SS.
Phase Transfer Catalysis
3rd ed.:
VCH;
New York:
1993.
2e
Starks CM.
Liotta CL.
Halpern M.
Phase-Transfer Catalysis. Fundamentals, Applications, and Industrial Perspectives
Chapman and Hall;
New York:
1994.
2f
Makosza M.
Fedorynski M.
Pol. J. Chem.
1996,
70:
1093
2g
Handbook of Phase Transfer Catalysis
Sasson Y.
Neumann R.
Blackie;
London:
1997.
3
O’Donnell MJ. In
Catalytic Asymmetric Synthesis
Ojima I.
VCH;
New York:
1993.
p.389-411
4a
Corey EJ.
Xu F.
Noe MC.
J. Am. Chem. Soc.
1997,
119:
12414
4b
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
4c
Park H.-G.
Jeong B.-S.
Yoo M.-S.
Lee J.-H.
Park M.-K.
Lee Y.-J.
Kim M.-J.
Jew S.-S.
Angew. Chem. Int. Ed.
2002,
41:
3036
4d
Bhunnoo RA.
Hu Y.
Laine DI.
Brown RCD.
Angew. Chem. Int. Ed.
2002,
41:
3479
4e
Ohshima T.
Gnanadesikan V.
Shibuguchi T.
Fukuta Y.
Nemoto T.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
11206
5a
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
5b
Ooi T.
Kameda M.
Maruoka K.
J. Am. Chem. Soc.
1999,
121:
6519
5c
Ooi T.
Sakai D.
Takeuchi M.
Tayama E.
Maruoka K.
Angew. Chem. Int. Ed.
2003,
42:
5868
5d
Lygo B.
Allbutt B.
James SR.
Tetrahedron Lett.
2003,
44:
5629
5e
Lygo B.
Allbutt B.
Synlett
2004,
326
6a
Stevens TS.
Creighton EM.
Gordon AB.
MacNicol M.
J. Chem. Soc.
1928,
3193
6b
Zaragoza F.
Tetrahedron
1997,
53:
3425
6c
Marko IE. In
Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.913-974
6d
Harwood LM.
Polar Rearrangements
Oxford University Press;
New York:
1992.
7a
Ollis WD.
Rey M.
Sutherland IO.
Closs GL.
J. Chem. Soc., Chem. Commun.
1975,
543
7b
Ollis WD.
Rey M.
Sutherland IO.
J. Chem. Soc., Perkin Trans. 1
1983,
1009
7c
Chantrapromma K.
Ollis WD.
Sutherland IO.
J. Chem. Soc., Perkin Trans. 1
1983,
1049
7d
Maeda Y.
Sato Y.
J. Chem. Soc., Perkin Trans. 1
1997,
1491
For recent examples of [1,2]-Stevens rearrangement, see:
8a
Pedrosa R.
Andres C.
Delgado M.
Synlett
2000,
893
8b
Chelucci G.
Saba A.
Valenti R.
Bacchi A.
Tetrahedron: Asymmetry
2000,
11:
3449
8c
Liou JP.
Cheng CY.
Tetrahedron Lett.
2000,
41:
915
8d
Padwa A.
Beall LS.
Eidell CK.
Worsencroft KJ.
J. Org. Chem.
2001,
66:
2414
8e
Hanessian S.
Mauduit M.
Angew. Chem. Int. Ed.
2001,
40:
3810
8f
Clark JS.
Middleton MD.
Org. Lett.
2002,
4:
765
8g
Glaeske KW.
Naidu BN.
West FG.
Tetrahedron: Asymmetry
2003,
14:
917
8h
Harada M.
Nakai T.
Tomooka K.
Synlett
2004,
365
9a
Joshua H.
Gans R.
Mislow K.
J. Am. Chem. Soc.
1968,
90:
4884
9b
Stara IG.
Stary I.
Tichy M.
Zavada J.
Hanus V.
J. Am. Chem. Soc.
1994,
116:
5084
10 Bis(tetrachlorobenzenediolato) mono([1,1′]binaphthalenyl-2,2′-diolato)phosphate(V) anion: Lacour J., Londez A., Goujon-Ginglinger C., Buß V., Bernardinelli G.; Org. Lett.; 2000, 2: 4185
11
Mikami K.
Yamanaka M.
Chem. Rev.
2003,
103:
3369
12
Vial L.
Lacour J.
Org. Lett.
2002,
4:
3939
13
Ooi T.
Kubota Y.
Maruoka K.
Synlett
2003,
1931
14
Schwesinger R.
Schlemper H.
Angew. Chem., Int. Ed. Engl.
1987,
26:
1167
15 Physical data for 4. Rf
= 0.94 (basic Al2O3, Et2O). 1H NMR (500 MHz, CDCl3, 233K): δ = 2.98 (dd, J = 13.56 Hz, J = 8.98 Hz,1 H), 3.24 (d, J = 8.98 Hz, 1 H), 3.34 (d, J = 13.56 Hz, 1 H), 3.49 (d, J = 13.71 Hz, 1 H), 3.91 (q
AB
, ΔνAB = 41.45 Hz, J
AB = 14.19 Hz, 2 H), 4.07 (d, J = 13.71 Hz, 1 H), 7.09 (d, J = 7.41 Hz, 1 H), 7.27-7.55 (m, 3 H), 7.65 (d, J = 7.56 Hz, 1 H), 7.67 (d, J = 7.72 Hz, 1 H). 13C NMR (126 MHz, CDCl3, 233K): δ = 38.1, 59.6, 62.3, 62.8, 126.3, 126.4, 126.9, 127.3, 127.4, 127.6, 127.7, 128.0, 128.0, 128.1, 128.5, 128.9, 129.1, 130.1, 130.7, 133.5, 138.7, 139.1, 139.5, 139.9, 140.1, 140.8, 141.0. IR (neat): 3061 (w), 3018 (w), 2923 (m), 2853 (m), 1481 (w), 1441 (m), 1361 (w), 1260 (w), 1191 (w), 1008 (w), 1081 (m), 941 (w), 801 (m), 746 (s) cm-1. HRMS (EI): m/e calcd for C22H19N: 297.15175; found: 297.15084. The ee was measured using CSP-HPLC (Chiracel AD-H, 95/5 i-PrOH-n-hexane, 0.5 mL/min, 23 °C).
16 For a preliminary report indicating the preferred formation of 4, see: Wittig G.
König G.
Clauss K.
Liebigs Ann. Chem.
1955,
593:
127
17 Crystal data for (C28H24N)+Cl-(CHCl3)0.7: M = 493.5, monoclinic, P21/c, a = 16.4658 (14), b = 14.7628 (9), c = 10.7661 (8), β = 101.132 (10)º Å, U = 2567.8 (3) Å3, T = 200 K, Z = 4, µ(MoKα) = 0.384 mm-1. The final R(F) = 0.046, wR(F) = 0.043 and S = 1.00(1). The CHCl3 molecules are disordered on two distinct sites refined for global population parameters of 0.7 and are located on channels parallel to the [001] direction. CCDC 234418.
18
Tichy M.
Budesinsky M.
Gunterova J.
Zavada J.
Podiaha J.
Cisarova I.
Tetrahedron
1999,
55:
7893
19 TRISPHAT is the common name for tris(tetrachloro-benzenediolato)phosphate(V) anion: Lacour J.
Ginglinger C.
Grivet C.
Bernardinelli G.
Angew. Chem., Int. Ed. Engl.
1997,
36:
608
20 The deuterium atom is distributed evenly between the axial and equatorial positions due to the rapid interconversion of the atropisomers of 3.
21 Gaussian 98 (Revision A.7): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 1998.
For reports on enantioselective [1,2]-Stevens rearrangement using ylide generated by the Rh(II) decomposition of chiral diazo compounds:
22a
West FG.
Naidu BN.
J. Am. Chem. Soc.
1994,
116:
8420
22b
Naidu BN.
West FG.
Tetrahedron
1997,
53:
16565
22c
Vanecko JA.
West FG.
Org Lett.
2002,
4:
2813
23 With salt [3][Δ-TRISPHAT], no enantioselectivity was expected as no stereoselective induction happens upon ion pairing.12