Subscribe to RSS
DOI: 10.1055/s-2004-829120
Direct Reductive Alkylation of Amino Acids: Synthesis of Bifunctional Chelates for Nuclear Imaging
Publication History
Publication Date:
01 July 2004 (online)
Abstract
A family of effective bifunctional chelators for technetium- and rhenium-based radiopharmaceuticals was conveniently synthesized in high yields through direct reductive N-alkylations of amino acids and their analogues with aldehydes, using NaBH(OAc)3 as an efficient reagent. The mono-, di-, tetra- and even mixed alkylated amino acid derivatives were all prepared in one-pot synthesis.
Key words
reductive alkylation - amino acids - bifunctional chelators - radiopharmaceuticals - sodium triacetoxyborohydride
- 1
Fischman AJ.Babich JW.Strauss HW. J. Nucl. Med. 1993, 34: 2253 -
2a
Yeh SM.Sherman DG.Meares CF. Anal. Biochem. 1979, 100: 152 -
2b
Meares CF.Wensel TG. Acc. Chem. Res. 1984, 17: 202 -
2c
Brechbiel MW.Gansow OA.Atcher RW.Schlom J.Esteban J.Simpson DE.Colcher D. Inorg. Chem. 1986, 25: 2772 ; and references cited therein -
2d
Hnatowich DJ.Mardirossen A.Ruscowski M.Fargarasi M.Virji F.Winnard P. Nucl. Med. Chem. 1993, 34: 109 - 3
Vanbilloen HP.Bormans GM.DeRoo MJ.Verbruggen AM. Nucl. Med. Biol. 1995, 22: 325 ; and references cited therein - 4
Rao TN.Adhikesavalu D.Camerman A.Fritzberg AR. J. Am. Chem. Soc. 1990, 112: 5798 - 5
Meegalla SK.Plössl K.Kung M.-P.Chumpradit S.Stevenson DA.Kushner SA.McElgin WT.Mozley PD.Kung HF. J. Med. Chem. 1997, 40: 9 ; and references cited therein - 6
O’Neil JP.Wilson SR.Katzenellenbogen JA. Inorg. Chem. 1994, 33: 319 -
7a
Rajagopalan R.Grummon GD.Bugaj J.Hallemann LS.Webb EG.Marmon ME.Vanderheyden JL.Srinivasan A. Bioconjugate Chem. 1997, 8: 407 -
7b
Wong E.Fauconnier T.Bennett S.Valliant J.Nguyen T.Lau F.Lu LFL.Pollak A.Bell RA.Thornback JR. Inorg. Chem. 1997, 36: 5799 -
7c
Pollak A.Roe DG.Pollock CM.Lu LFL.Thornback JR. J. Am. Chem. Soc. 1999, 121: 11593 - Numerous examples of peptide-based bifunctional chelators for the {Tc(V)O}3+ core have been described in recent years. Representative examples include:
-
8a MAG3 types (MAG3 = mercaptoacetylglycylglycylglycine):
Liu S.Edwards DS.Looby RJ.Poirier MJ.Rajopadhye M.Bourque JP.Carroll TR. Bioconjugate Chem. 1996, 7: 196 -
8b See also:
Kasina S.Sanderson JA.Fitzner JN.Srinivasan A.Rao TN.Hobson LJ.Reno JM.Axworthy DB.Beaumier PL.Fritzberg AR. Bioconjugate Chem. 1998, 9: 108 -
8c See also:
Van Domselaar GH.Okarvi SM.Fanta M.Suresh MR.Wishart DS. J. Labelled Comp. Radiopharm. 2000, 43: 1193 -
8d See also:
Zhu Z.Wang Y.Zhang Y.Liu G.Liu N.Rusckowski M.Hnatowich D. J. Nucl. Med. Biol. 2001, 28: 703 ; and references therein -
8e
Goodbody A, andPollak A. inventors; WO Patent Appl. 9522996. Other cysteine-containing tripeptides and derivatives: ; Chem. Abstr. 1995, 123, 250205 -
8f See also:
Pollak A.Goodbody AE.Ballinger JR.Duncan GS.Tran LL.Dunn-Dufault R.Meghji K.Lau F.Andrey TW. Nucl. Med. Commun. 1996, 17: 132 -
8g See also:
Lister-James J.Knight LC.Mauer AH.Bush LR.Moyer BR.Dean RT. J. Nucl. Med. 1996, 37: 775 -
8h See also:
Pearson DA.Lister-James J.McBride WJ.Wilson DM.Martel LJ.Civitello ER.Taylor JE.Moyer BR.Dean RT. J. Med. Chem. 1996, 39: 1361 -
8i See also:
Wishart DS. Tools for Protein Technologies, Biotechnology 2nd ed., Vol. 5b: John Wiley & Sons; New York: 2001. p.325 -
8j Gly-Ala-Gly-Gly peptide:
Ben-Haim S.Kahn D.Weiner GJ.Madsen MT.Waxman AD.Williams CM.Clarke-Pearson DL.Colemann RE.Maguire RT. Nucl. Med. Biol. 1994, 21: 131 -
8k
Luyt LG.Hunter DH. Book of Abstracts, 217th National Meeting of the American Chemical Society, Anaheim, CA, March 21-25: 1999 American Chemical Society; Washington DC: 1999. p.NUCL-184 - 9
Schwartz DA.Abrams MJ.Hauser MM.Gaul FE.Larsen SK.Rauh D.Zubieta JA. Bioconjugate Chem. 1991, 2: 333 - 10
Babich JW.Solomon H.Pike MC.Kroon D.Graham W.Abrams MJ.Tompkins RG.Rubin RH.Fischman AJ. J. Nucl. Med. 1993, 34: 1964 - 11
Rusckowski M.Qu T.Gupta S.Ley A.Hnatowich DJ. J. Nucl. Med. 2001, 42: 1870 - 12
Babich JW.Fischman AJ. Nucl. Med. Biol. 1995, 22: 25 - 13
Alberto R.Ortner K.Wheatley N.Schibli R.Schubiger AP. J. Am. Chem. Soc. 2001, 123: 3135 - 14
Banerjee SR.Levadala MK.Lazarova N.Wei L.Valliant JF.Stephenson KA.Babich JW.Maresca KP.Zubieta J. Inorg. Chem. 2002, 41: 6417 - 15
Banerjee SR.Wei L.Levadala MK.Lazarova N.Golub VOJ.O’Connor CJ.Stephenson KA.Valliant JF.Babich JW.Zubieta J. Inorg. Chem. 2002, 41: 5795 -
16a
Stephenson KA.Valliant JF.Zubieta J.Banerjee SR.Levadala MK.Taggart L.Ryan L.McFarlane N.Boreham DR.Babich JW.Maresca KP. J. Nucl. Med. 2003, 44: 48P -
16b
Stephenson KA.Zubieta J.Banerjee SR.Levadala MK.Taggart L.Ryan L.McFarlane N.Boreham DR.Maresca KP.Babich JW.Valliant JF. Bioconjugate Chem. 2004, 15: 128 -
17a
Laschat S.Fröhlich R.Wibbeling B. J. Org. Chem. 1996, 61: 2829 -
17b
Nefzi A.Ostresh JM.Houghten RA. Tetrahedron Lett. 1997, 38: 4943 -
17c
Boger DL.Zhou J.Borzilleri RM.Nukui S.Castle SL. J. Org. Chem. 1997, 62: 2054 -
17d
Cao B.Xiao D.Joullé MM. Org. Lett. 1999, 1: 1799 -
17e
Weigl M.Wunsch B. Org. Lett. 2000, 2: 1177 -
18a
Ohfune Y.Kurokawa N.Higuchi N.Saito M.Hashimoto M.Tanaka T. Chem. Lett. 1984, 3: 441 -
18b
Baggaley KH.Fears R.Ferres H.Geen GR.Hatton IK.Jennings LJA.Tyrrell AWR. Eur. J. Med. Chem. 1988, 23: 523 -
18c
Salvi J.-P.Walchshofer N.Paris J. Tetrahedron Lett. 1994, 35: 1181 -
18d
Bitan G.Muller D.Kasher R.Gluhov EV.Gilon C. J. Chem. Soc., Perkin Trans. 1 1997, 1501 -
19a
Andruszkiewicz R. Pol. J. Chem. 1988, 62: 257 ; Chem. Abstr. 1990, 112, 56607 -
19b
Wang Z.-M.Lin H.-K.Zhou Z.-F.Zhu S.-R.Liu T.-F.Chen Y.-T. J. Chem. Res., Synop. 2000, 170 -
19c
Verardo G.Geatti P.Pol E.Giumanini AG. Can. J. Chem. 2002, 80: 779 -
20a
Song Y.Sercel AD.Johnson DR.Colbry NL.Sun K.-L.Roth BD. Tetrehedron Lett. 2000, 41: 8225 -
20b
Quitt P.Hellerbach J.Vogler K. Helv. Chim. Acta 1963, 46: 327 - 21
Zhou DL.Guan YD.Jin S. Chin. Chem. Lett. 1990, 1: 209 -
22a
Abdel-Magid AF.Maryanoff CA. Synlett 1990, 537 -
22b
Abdel-Magid AF.Maryanoff CA.Carson KG. Tetrahedron Lett. 1990, 31: 5595 -
22c
Abdel-Magid AF.Carson KG.Harris BD.Maryanoff CA.Shah RD. J. Org. Chem. 1996, 61: 3849 -
23a
Ramanjulu JM.Joullé MM. Synth. Commun. 1996, 26: 1379 -
23b
Kulkarni BA.Ganesan A. Angew. Chem., Int. Ed. Engl. 1997, 36: 2454 -
23c
Abdel-Magid AF.Harris BD.Maryonoff CA. Synlett 1994, 81 -
23d
Kubota H.Kubo A.Takahashi M.Shimizu R.Da-te T.Okamura K.Nunami K.-I. J. Org. Chem. 1995, 60: 6776 -
23e
Abdel-Magid AF.Maryanoff CA. ACS Symposium Series 641, Reductions in Organic Synthesis American Chemical Society; Washington DC: 1996. p.201 - 26
Alberto R.Egli A.Abram U.Hegetschweiler K.Gramlich V.Schubiger PA. J. Chem. Soc., Dalton Trans. 1994, 2815 - 27
Alberto R.Schibli R.Schubiger AP. J. Am. Chem. Soc. 1999, 121: 6076
References
Table [1] , Entry 6 (C22 H25 N3 O3, formula weight 379.45): Orthorhombic, space group P212121 with a = 7.3392(4) Å, b = 15.0539(7) Å, c = 17.9286(9) Å, V = 1980.82(17) Å3, Z = 4, R1 = 0.0556, wR2 = 0.1079 (F2, all data). Full details on the crystal structure of 6 are available from the authors.
25The imine to aldehyde ratio was in the range of 1: 0.10-0.20, as determined by 1H NMR spectrum.
28Maresca, K. P.; Levadala, M. K.; Banerjee, S. R.; Babich, J. W.; Zubieta, J., unpublished results.