Synthesis 2004(13): 2216-2221  
DOI: 10.1055/s-2004-829190
SPECIALTOPIC
© Georg Thieme Verlag Stuttgart · New York

Allyltrimethoxysilane Addition to N-Acylhydrazones: Two Catalytic Methods Employing CuCl and Fluoride

Hui Ding, Gregory K. Friestad*
Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA
Fax: +1(802)6568705; e-Mail: gregory.friestad@uvm.edu;
Further Information

Publication History

Received 21 May 2004
Publication Date:
13 August 2004 (online)

Abstract

Two alternative reaction conditions developed for allyl­trimethoxysilane addition to N-benzoylhydrazones enable efficient and versatile access to homoallylic α-branched amines. Aldehyde hydrazones, both aromatic and aliphatic, and ketone hydrazones all give good yields. One set of conditions employs catalytic amounts of CuCl and tetrabutylammonium triphenyldifluorosilicate (TBAT); improved yields and reaction times are obtained at 80 °C in the presence of bis(diphenylphosphino)ethane (dppe) and t-BuOH as additives. The second set of conditions employs 20 mol% TBAT as a fluoride source in a metal-free catalytic system; here t-BuOH offers only modest improvement, and ambient temperatures are optimal. For example, under this second set of conditions, the N-benzoylhydrazone from ethyl pyruvate affords the homoallylic tert-alkyl amine adduct in 78% yield.

    References

  • Reviews of allyl organometallic addition to C=N bonds:
  • 1a Kobayashi S. Ishitani H. Chem. Rev.  1999,  99:  1069 
  • 1b Bloch R. Chem. Rev.  1998,  98:  1407 
  • 1c Enders D. Reinhold U. Tetrahedron: Asymmetry  1997,  8:  1895 
  • 1d Denmark SE. Nicaise OJ.-C. J. Chem. Soc., Chem. Commun.  1996,  999 
  • 1e Yamamoto Y. Asao N. Chem. Rev.  1993,  93:  2207 
  • 1f Kleinman EF. Volkmann RA. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Pergamon; New York: 1991.  p.975 
  • 2a Fang X. Johannsen M. Yao S. Gathergood N. Hazell RG. Jorgensen KA. J. Org. Chem.  1999,  64:  4844 
  • 2b Wang D.-K. Zhou Y.-G. Tang Y. Hou X.-L. Dai L.-X. J. Org. Chem.  1999,  64:  4233 
  • 2c Pilcher AS. DeShong P. J. Org. Chem.  1996,  61:  6901 
  • 2d Kobayashi S. Hirabayashi R. J. Am. Chem. Soc.  1999,  121:  6942 
  • 2e Hirabayashi R. Ogawa C. Sugiura M. Kobayashi S. J. Am. Chem. Soc.  2001,  123:  9493 
  • 3 Friestad GK. Ding H. Angew. Chem. Int. Ed.  2001,  40:  4491 
  • 4 Kobayashi S. Ogawa C. Konishi H. Sugiura M. J. Am. Chem. Soc.  2003,  125:  6610 
  • 5a Berger R. Rabbat PMA. Leighton JL. J. Am. Chem. Soc.  2003,  125:  9596 
  • 5b Berger R. Duff K. Leighton JL. J. Am. Chem. Soc.  2004,  126:  5686 
  • 6 Yamasaki S. Fujii K. Wada R. Kanai M. Shibasaki M. J. Am. Chem. Soc.  2002,  124:  6536 
  • 7 Hamada T. Manabe K. Kobayashi S. Angew. Chem. Int. Ed.  2003,  42:  3927 
  • 8a Fernandes RA. Yamamoto Y. J. Org. Chem.  2004,  69:  735 
  • 8b Fernandes RA. Stimac A. Yamamoto Y. J. Am. Chem. Soc.  2003,  125:  14133 
  • 10a

    Some control experiments were examined in order to obtain evidence about the roles of the reagents. First, hydrazone 1 was mixed with the CuCl and t-BuBOX ligand for 2 h, followed by addition of a mixture of allyltrimethoxysilane and TBAT; no reaction occurred. Under conditions otherwise identical to the first control experiment, additional CuCl was included in the silane mixture; still there was no reaction. On the other hand, including both CuCl and dppe in the silane mixture restored the reactivity, affording 2 in 67% yield. These experiments suggest that the main role of CuCl is in generating the active nucleophilic species, not as a Lewis acid activator of the benzoylhydrazone. The phosphine may serve as a stabilizing ligand within a Cu-containing allyl nucleophile; the exact identity of this nucleophile is unclear. Shibasaki has suggested an allylcopper or an allylsilicate-Cu+ ion pair (ref.6).

  • 10b

    The hydrazone N-H was changed to N-Me; benzaldehyde N-methyl-N-benzoylhydrazone gave no reaction, suggesting that deprotonation of the hydrazone N-H, or its involvement in a hydrogen bond, may be essential to the mechanism. Leighton has observed a similar requirement for the N-H bond (see ref.5b).

  • 11 The availability of the Cu-free achiral pathway may contribute to the low enantioselectivity found in reactions employing chiral ligands. For related observations in Cu(II)-catalyzed Mannich-type additions to iminophosphonates, see: Kobayashi S. Kiyohara H. Nakamura Y. Matsubara R. J. Am. Chem. Soc.  2004,  126:  6558 
  • 12 Mechanisms of metal-free reactions involving fluoride activation are distinctly different from those in the presence of Cd(II) or Ag(I), where evidence for regeneration of a metal fluoride by Si-F cleavage has been presented: Aoyama N. Hamada T. Manabe K. Kobayashi S. J. Org. Chem.  2003,  68:  7329 
  • Reviews of nucleophilic activation of allylsilanes:
  • 13a Chuit CC. Corriu RJP. Reye C. Young JC. Chem. Rev.  1993,  93:  1371 
  • 13b Kennedy JWJ. Hall DG. Angew. Chem. Int. Ed.  2003,  42:  4732 
  • 15 Wu P.-L. Peng S.-Y. Magrath J. Synthesis  1995,  435 
  • 16 Aly MF. Grigg R. Tetrahedron  1988,  44:  7271 
  • 17 Palla G. Predieri G. Domino P. Tetrahedron  1986,  42:  3649 
  • 18 Aggarwal JS. Darbari NL. Ray JN. J. Chem. Soc.  1929,  1941 
  • 19 Agarwal SK. Gupta R. Kumar D. Pol. J. Chem.  1989,  63:  329 
  • 20 Walker CC. Schechter H. J. Am. Chem. Soc.  1968,  90:  5626 
  • 21 Hegarty A. Kearney JA. Cashell PA. Scott FL. J. Chem. Soc., Perkin Trans. 2  1976,  242 
  • 22 Abdel-Rahman RM. El-Gendy Z. Fawzy MM. Mahmoud MB. J. Indian Chem. Soc.  1991,  68:  628 
  • 23 Curtius T. Struve G. J. Prakt. Chem.  1894,  50:  295 
9

In combination with t-BuOH as proton source, the yield with t-BuBOX improved to 51%, but the enantioselectivity decreased to only 1.8% ee.

14

Proton transfer would convert 8 to a more stable amide anion, which could react with allyltrimethoxysilane at the amide oxygen. This O-silylation pathway for the autocatalysis is consistent with the complete absence of reactivity when the proton transfer is blocked by N-methylation (see ref.10b).