Abstract
In the field of peptidomimetics, major efforts have been focused on the design and
synthesis of conformationally constrained compounds that mimic or induce reverse-turn
motifs of peptides and proteins which are thought to play important roles in recognition
and biological activity. In this regard, a particularly attractive class of compounds
are the azabicyclo[X.Y.0]alkane dipeptide mimics. We present our efforts on the design,
synthesis, and conformational analysis of a series of rigid surrogates of dipeptide
units for applications within constrained peptide analogues, for employment as inputs
for combinatorial science and biological applications. Several general and versatile
synthetic approaches have been conceived to deliver a variety of enantiomerically
pure azabicycloalkanes. All of these methodologies rely on the construction of a 5-,
6-, or 7-membered lactam on a preformed proline based nucleus. Different strategies
were adopted to perform the key cyclization step: a) radical addition to an olefinic
double bond, b) alkylation of a malonate enolate, c) ring-closing metathesis (RCM),
and d) lactam bond formation.
1 Introduction
2 Synthesis of Azabicyclo[X.Y.0]alkane Amino Acids
2.1 Radical Approach
2.1.1 Synthesis of Cyclization Precursors
2.2 Non-Radical Approaches
2.2.1 Synthesis of 5,5-, 6,5- and 7,5-Fused Bicyclic Lactams via Horner-Emmons Olefination
and Lactam Bond Formation
2.2.2 Hydrophobic Appendages at C-3 Position via Malonate Alkylation or RCM
2.2.3 Spiro and Trinuclear Dipeptide Mimics via Lactam Bond Formation or RCM
2.2.4 Heteroatomic Side-Chain Functionalization via Lactam Bond Formation or RCM
3 Conformational Analysis of Azabicycloalkane Amino Acids
3.1 Molecular Modeling
3.2 Discussion of 1 H NMR and IR Data
4 Incorporation of Azabicycloalkane Amino Acids into Bioactive Peptides
4.1 Thrombin Inhibitors
4.2 αν β3 -Integrin Ligands
Key words
peptidomimetic - peptide secondary structure - azabicycloalkane amino acids - biological
activity - conformational analysis
References
Recent reviews for design and synthesis of ‘dipeptide-turn mimetics’:
<A NAME="RA33603ST-1A">1a </A>
Halab L.
Gosselin F.
Lubell WD.
Biopolym. (Pept. Sci.)
2000,
55:
101
<A NAME="RA33603ST-1B">1b </A>
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
<A NAME="RA33603ST-1C">1c </A> Reviews for the applications of peptidomimetics including turn mimetics:
Giannis A.
Kolter T.
Angew. Chem., Int. Ed. Engl.
1994,
33:
1699
Reviews regarding conformational and topographical considerations in designing peptidomimetics
including turn mimetics:
<A NAME="RA33603ST-2A">2a </A>
Hruby VJ.
Life Sci.
1982,
31:
189
<A NAME="RA33603ST-2B">2b </A>
Hruby VJ.
Al-Obeidi F.
Kazmierski WM.
Biochem. J.
1990,
268:
249
<A NAME="RA33603ST-2C">2c </A>
Hruby VJ.
Balse PM.
Curr. Top. Med. Chem.
2000,
7:
945
Indolizidin-2-one amino acids:
<A NAME="RA33603ST-3A">3a </A>
Hanessian S.
Ronan B.
Laoui A.
Bioorg. Med. Chem. Lett.
1994,
4:
1397
<A NAME="RA33603ST-3B">3b </A>
Li W.
Hanau CE.
d’Avignon A.
Moeller KD.
J. Org. Chem.
1995,
60:
8155
<A NAME="RA33603ST-3C">3c </A>
Hanessian S.
McNaughton-Smith G.
Bioorg. Med. Chem. Lett.
1996,
6:
1567
<A NAME="RA33603ST-3D">3d </A>
Li W.
Moeller KD.
J. Am. Chem. Soc.
1996,
118:
10106
<A NAME="RA33603ST-3E">3e </A>
Wessig P.
Tetrahedron Lett.
1999,
40:
5987
<A NAME="RA33603ST-3F">3f </A>
Boatman PD.
Ogbu CO.
Eguchi M.
Kim H.-O.
Nakanishi H.
Cao B.
Shea JP.
Kahn M.
J. Med. Chem.
1999,
42:
1367
<A NAME="RA33603ST-3G">3g </A>
Estiarte MA.
Rubiralta M.
Diez A.
Thormann M.
Giralt E.
J. Org. Chem.
2000,
65:
6992
<A NAME="RA33603ST-3H">3h </A>
Mulzer J.
Schulzchen F.
Bats J.-W.
Tetrahedron
2000,
56:
4289
<A NAME="RA33603ST-3I">3i </A>
Beal LM.
Liu B.
Chu W.
Moeller KD.
Tetrahedron
2000,
56:
10113
<A NAME="RA33603ST-3J">3j </A>
Wang W.
Xiong C.
Hruby VJ.
Tetrahedron Lett.
2001,
42:
3159
<A NAME="RA33603ST-3K">3k </A>
Zhang X.
Jiang W.
Schmitt AC.
Tetrahedron Lett.
2001,
42:
4943
<A NAME="RA33603ST-3L">3l </A>
Millet R.
Domarkas J.
Rombaux P.
Rigo B.
Houssin R.
Hénichart J.-P.
Tetrahedron Lett.
2002,
43:
5087
<A NAME="RA33603ST-3M">3m </A>
Zhang J.
Xiong C.
Wang W.
Ying J.
Hruby VJ.
Org. Lett.
2002,
4:
4029
<A NAME="RA33603ST-3N">3n </A>
Sun H.
Moeller KD.
Org. Lett.
2002,
4:
1547
<A NAME="RA33603ST-3O">3o </A>
Wang W.
Yang J.
Ying J.
Xiong C.
Zhang J.
Cai C.
Hruby VJ.
J. Org. Chem.
2002,
67:
6353
<A NAME="RA33603ST-3P">3p </A>
Zhang J.
Xiong C.
Ying J.
Wang W.
Hruby VJ.
Org. Lett.
2003,
5:
3115
<A NAME="RA33603ST-3Q">3q </A>
Gardiner J.
Abell AD.
Tetrahedron Lett.
2003,
44:
4227
Indolizidin-9-one:
<A NAME="RA33603ST-4A">4a </A>
Gosselin F.
Lubell WD.
J. Org. Chem.
1998,
63:
7463
<A NAME="RA33603ST-4B">4b </A>
De La Figuera N.
Rosas I.
Garcia-Lopez MT.
Gonzalez-Muniz R.
J. Chem. Soc., Chem. Comm.
1994,
613
<A NAME="RA33603ST-4C">4c </A>
Lamazzi C.
Carbonnel S.
Calinaud P.
Troin Y.
Heterocycles
2003,
60:
1447
<A NAME="RA33603ST-4D">4d </A>
Shimizu M.
Nemoto H.
Kakuda H.
Takahata H.
Heterocycles
2003,
59:
245
Pyrroloazepinone amino acids:
<A NAME="RA33603ST-5A">5a </A>
Tremmel P.
Geyer A.
J. Am. Chem. Soc.
2002,
124:
8548
<A NAME="RA33603ST-5B">5b </A>
Gosselin F.
Lubell WD.
J. Org. Chem.
2000,
65:
2163
<A NAME="RA33603ST-5C">5c </A>
Geyer A.
Moser F.
Eur. J. Org. Chem.
2000,
1113
Other examples:
<A NAME="RA33603ST-6A">6a </A>
Robl JA.
Tetrahedron Lett.
1994,
35:
393
<A NAME="RA33603ST-6B">6b </A>
Robl JA.
Cimarusti MP.
Simpkins LM.
Weller HN.
Pan YY.
Malley M.
Di Marco JD.
J. Am. Chem. Soc.
1994,
116:
2348
<A NAME="RA33603ST-6C">6c </A>
Robl JA.
Karanewsky DS.
Asaad MM.
Tetrahedron Lett.
1995,
36:
1593
<A NAME="RA33603ST-6D">6d </A>
Mueller R.
Revesz L.
Tetrahedron Lett.
1994,
35:
4091
<A NAME="RA33603ST-6E">6e </A>
De Lombaert S.
Blanchard L.
Stamford LB.
Sperbeck DM.
Grim MD.
Jenson TM.
Rodriguez HR.
Tetrahedron Lett.
1994,
35:
7513
<A NAME="RA33603ST-6F">6f </A>
Lombart HG.
Lubell WD.
J. Org. Chem.
1994,
59:
6147
<A NAME="RA33603ST-6G">6g </A>
Nagai U.
Sato K.
Nakamura R.
Kato R.
Tetrahedron
1993,
49:
3577
<A NAME="RA33603ST-7">7 </A>
Colombo L.
Di Giacomo M.
Papeo G.
Cargo O.
Scolastico C.
Manzoni L.
Tetrahedron Lett.
1994,
35:
4031
<A NAME="RA33603ST-8">8 </A>
Colombo L.
Di Giacomo M.
Scolastico C.
Manzoni L.
Belvisi L.
Molteni V.
Tetrahedron Lett.
1995,
36:
625
<A NAME="RA33603ST-9">9 </A>
Colombo L.
Di Giacomo M.
Belvisi L.
Manzoni L.
Scolastico C.
Gazz. Chim. Ital.
1996,
126:
543
<A NAME="RA33603ST-10">10 </A>
Manzoni L.
Belvisi L.
Scolastico C.
Synlett
2000,
1287
<A NAME="RA33603ST-11">11 </A>
Baldwin EJ.
J. Chem. Soc., Chem. Commun.
1976,
734
Calculations were performed employing a modified version of the MM2 force field model
for intramolecular radical addition to alkenes developed by Houk and now incorporated
in the program MacroModel. See:
<A NAME="RA33603ST-12A">12a </A>
Belvisi L.
Gennari C.
Poli G.
Scolastico C.
Salom B.
Vassallo M.
Tetrahedron
1992,
48:
3945
<A NAME="RA33603ST-12B">12b </A>
Houk KN.
Paddon-Row MN.
Spellmeyer DC.
Rondan G.
Nagase S.
J. Org. Chem.
1987,
52:
959
<A NAME="RA33603ST-12C">12c </A>
Mohamadi F.
Richards NGJ.
Guida WC.
Liskamp R.
Caufield C.
Chang G.
Hendrickson T.
Still WC.
J. Comput. Chem.
1990,
11:
440
<A NAME="RA33603ST-13">13 </A>
Viehe HG.
Merény R.
Stella L.
Janousek Z.
Angew. Chem., Int. Ed. Engl.
1979,
18:
917
<A NAME="RA33603ST-14A">14a </A>
Cignarella G.
Nathansohon G.
J. Org. Chem.
1961,
26:
1500
<A NAME="RA33603ST-14B">14b </A>
Boutelje J.
Hjalmarsson M.
Hult K.
Lindbäck M.
Norin T.
Bioorg. Chem.
1988,
16:
364
<A NAME="RA33603ST-15">15 </A>
Peterson JS.
Felles G.
Rapoport H.
J. Am. Chem. Soc.
1984,
106:
4539
<A NAME="RA33603ST-16">16 </A>
Chiesa MV.
Manzoni L.
Scolastico C.
Synlett
1996,
441
<A NAME="RA33603ST-17">17 </A>
Greco PA.
Jaw JY.
Claremond DA.
Nicolaou KC.
J. Org. Chem.
1981,
46:
1215
<A NAME="RA33603ST-18A">18a </A>
Lombart H.-G.
Lubell WD.
J. Org. Chem.
1996,
61:
9437
<A NAME="RA33603ST-18B">18b </A>
Polyak F.
Lubell WD.
J. Org. Chem.
1998,
63:
7463
<A NAME="RA33603ST-18C">18c </A>
Polyak F.
Lubell WD.
J. Org. Chem.
2001,
66:
1171
<A NAME="RA33603ST-19">19 </A>
Dietrich E.
Lubell WD.
J. Org. Chem.
2003,
68:
6988
<A NAME="RA33603ST-20">20 </A>
Angiolini M.
Araneo S.
Belvisi L.
Cesarotti E.
Checchia A.
Crippa L.
Manzoni L.
Scolastico C.
Eur. J. Org. Chem.
2000,
2571 ; the procedures reported in this paper have been also used for the gram scale
preparation of the bicyclic lactams
<A NAME="RA33603ST-21">21 </A>
Collado I.
Ezquerra J.
Vaquero JJ.
Pedregal C.
Tetrahedron Lett.
1994,
43:
8037
<A NAME="RA33603ST-22">22 </A>
Schmidt U.
Lieberkneckt A.
Wild J.
Synthesis
1984,
53
<A NAME="RA33603ST-23A">23a </A>
Salimbeni A.
Paleari F.
Canevotti R.
Criuscuoli M.
Lippi A.
Angiolini M.
Belvisi L.
Scolastico C.
Colombo L.
Bioorg. Med. Chem. Lett.
1997,
7:
2205
<A NAME="RA33603ST-23B">23b </A>
Colombo L.
Di Giacomo M.
Brusotti G.
Sardone N.
Angiolini M.
Belvisi L.
Maffioli S.
Manzoni L.
Scolastico C.
Tetrahedron
1998,
54:
5325
<A NAME="RA33603ST-24">24 </A>
Steward, J. J. P. MOPAC Version 60, F. J. Seiler Research Laboratory U. S. Air Force
Academy CO 80840, QCPE 455.
<A NAME="RA33603ST-25">25 </A>
Högberg T.
Ström P.
Ebner M.
Rämsby SJ.
J. Org. Chem.
1987,
52:
2033
<A NAME="RA33603ST-26">26 </A>
Kajigaeshi S.
Asano K.
Fujisaki S.
Kakinami T.
Okamoto T.
Chem. Lett.
1989,
463
<A NAME="RA33603ST-27">27 </A>
Colombo L.
Di Giacomo M.
Vinci V.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
4501
For reviews on catalytic olefin metathesis see:
<A NAME="RA33603ST-28A">28a </A>
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
<A NAME="RA33603ST-28B">28b </A>
Phillips AJ.
Abell AD.
Aldrichimica Acta
1999,
32:
75
<A NAME="RA33603ST-28C">28c </A>
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
<A NAME="RA33603ST-28D">28d </A>
Trnka TM.
Grubbs RH.
Acc. Chem Res.
2001,
34:
18
<A NAME="RA33603ST-28E">28e </A>
Hoveyda AH.
Schrock RR.
Chem.-Eur. J.
2001,
7:
945
<A NAME="RA33603ST-29">29 </A>
Grossmith CE.
Senia F.
Wagner J.
Synlett
1999,
1660
<A NAME="RA33603ST-30A">30a </A>
Beal LM.
Moeller KD.
Tetrahedron Lett.
1998,
39:
4639
<A NAME="RA33603ST-30B">30b </A>
Beal LM.
Liu B.
Chu W.
Moeller KD.
Tetrahedron
2000,
56:
10113
<A NAME="RA33603ST-30C">30c </A>
Hoffmann T.
Lanig H.
Waibel R.
Gmeiner P.
Angew. Chem. Int. Ed.
2001,
40:
3361
<A NAME="RA33603ST-30D">30d </A>
Sung H.
Sunghoon M.
Beak P.
J. Org. Chem.
2001,
66:
9056
<A NAME="RA33603ST-31">31 </A>
Brocherieux-Lanoy S.
Dhimane H.
Poupon J.-C.
Vanucci C.
Lhommet G.
J. Chem. Soc., Perkin Trans. 1
1997,
2163
<A NAME="RA33603ST-32">32 </A>
Shono T.
Fujita T.
Matsumura Y.
Chem. Lett.
1991,
1:
81
<A NAME="RA33603ST-33A">33a </A>
Berkovitz DB.
McFadden JM.
Chisowa E.
Semerad CL.
J. Am. Chem. Soc.
2000,
122:
11031
<A NAME="RA33603ST-33B">33b </A>
Berkovitz DB.
McFadden JM.
Sloss MK.
J. Org. Chem.
2000,
65:
2907
<A NAME="RA33603ST-33C">33c </A>
Berkovitz DB.
Chisowa E.
McFadden JM.
Tetrahedron
2001,
57:
6329
<A NAME="RA33603ST-34">34 </A>
The following activating agents were used in different conditions of temperature and
solvent: DCC CIP/HOAt HATU EDC/HOAt DPPA and PyBop.
<A NAME="RA33603ST-35">35 </A>
Frérot E.
Coste J.
Pantaloni A.
Dufour M.-N.
Jouin P.
Tetrahedron
1991,
47:
259
<A NAME="RA33603ST-36A">36a </A>
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
<A NAME="RA33603ST-36B">36b </A>
Chatterjee AK.
Grubbs RH.
Org. Lett.
1999,
1:
1751
<A NAME="RA33603ST-37">37 </A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J. Am. Chem. Soc.
2000,
122:
8168
<A NAME="RA33603ST-38">38 </A>
Manzoni L.
Colombo M.
May E.
Scolastico C.
Tetrahedron
2001,
57:
249
<A NAME="RA33603ST-39">39 </A>
Belvisi L.
Colombo L.
Colombo M.
Di Giacomo M.
Manzoni L.
Vodopivec B.
Scolastico C.
Tetrahedron
2001,
57:
6463
<A NAME="RA33603ST-40">40 </A>
Crossley MJ.
Reid RC.
J. Chem. Soc., Chem. Commun.
1994,
2237
<A NAME="RA33603ST-41A">41a </A> For a review on pyroglutamic acids see:
Nájera C.
Yus M.
Tetrahedron: Asymmetry
1999,
10:
2245 ; and references cited therein
<A NAME="RA33603ST-41B">41b </A>
Shono T.
Matsumura Y.
Tsubata K.
Sugihara Y.
Yamane S.-I.
Kanazawa T.
Aoki T.
J. Am. Chem. Soc.
1982,
104:
6697
<A NAME="RA33603ST-41C">41c </A>
Shono T.
Matsumura Y.
Tsubata K.
Org. Synth.
1985,
63:
206
<A NAME="RA33603ST-42">42 </A>
Ezquerra J.
Pedregal C.
Rubio A.
J. Org. Chem.
1994,
59:
4327 ; and references therein
<A NAME="RA33603ST-43A">43a </A>
Pedregal C.
Ezquerra J.
Escribano A.
Carreño MC.
Garcia Ruano JL.
Tetrahedron Lett.
1994,
35:
7277
<A NAME="RA33603ST-43B">43b </A>
Ezquerra J.
Pedregal C.
Yruretagoyena B.
Rubio A.
Carreño MC.
Escribano A.
Garcia Ruano J.
J. Org. Chem.
1995,
60:
2925
<A NAME="RA33603ST-44A">44a </A>
Russowsky D.
Petersen RZ.
Godoi MN.
Pilli RA.
Tetrahedron Lett.
2000,
41:
9939
<A NAME="RA33603ST-44B">44b </A>
Onishi Y.
Ito T.
Ysuda M.
Baba A.
Eur. J. Org. Chem.
2002,
1578
<A NAME="RA33603ST-45">45 </A>
Hanessian S.
Margarita R.
Tetrahedron Lett.
1998,
39:
5887
<A NAME="RA33603ST-46A">46a </A>
Hayen A.
Kock R.
Saak W.
Haase D.
Metzger JO.
J. Am. Chem. Soc.
2000,
122:
12458
<A NAME="RA33603ST-46B">46b </A>
Mathias LJ.
Synthesis
1979,
561
<A NAME="RA33603ST-47A">47a </A>
Artale E.
Banfi G.
Belvisi L.
Colombo L.
Colombo M.
Manzoni L.
Scolastico C.
Tetrahedron
2003,
59:
6241
<A NAME="RA33603ST-47B">47b </A>
Bracci A.
Manzoni L.
Scolastico C.
Synthesis
2003,
2363
<A NAME="RA33603ST-48">48 </A>
McClure KF.
Renold P.
Kemp DS.
J. Org. Chem.
1995,
60:
454
<A NAME="RA33603ST-49">49 </A>
Rose GD.
Gierasch LM.
Smith JA.
Adv. Prot. Chem.
1985,
37:
1
<A NAME="RA33603ST-50">50 </A>
Chang G.
Guida WC.
Still WC.
J. Am. Chem. Soc.
1989,
11:
4379
<A NAME="RA33603ST-51">51 </A>
Still WC.
Tempczyk A.
Hawley RC.
Hendrickson T.
J. Am. Chem. Soc.
1990,
112:
6127
<A NAME="RA33603ST-52">52 </A>
Garcia-Moreno EB.
Dwyer JJ.
Gittis AG.
Lattman EE.
Spencer DS.
Sites WE.
Biophys. Chem.
1997,
64:
211
<A NAME="RA33603ST-53">53 </A>
Belvisi L.
Bernardi A.
Manzoni L.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
2563
<A NAME="RA33603ST-54">54 </A>
Molecular mechanics calculations were performed within the framework of MacroModel
[12c ]
version 55 using the MacroModel implementation of the Amber all-atom force field
[77 ]
(denoted AMBER*). The torsional space of each molecule was randomly varied with the
usage-directed Monte Carlo conformational search of Chang Guida and Still.
[50 ]
Ring-closure bonds were defined in the six- and seven-membered rings of the 6,5-
and 7,5-fused bicyclic lactams, respectively. Amide bonds were included among the
rotatable bonds. For each search at least 2000 starting structures for each variable
torsion angle were generated and minimized until the gradient was less than 0.05 kJ/Åmol
using the truncated Newton-Raphson method
[78 ]
implemented in MacroModel. Duplicate conformations and those with an energy greater
than 6 kcal/mol above the global minimum were discarded. The nature of the stationary
points individuated was tested by computing the eigenvalues of the second-derivative
matrix.
<A NAME="RA33603ST-55">55 </A>
Ball JB.
Hughes RA.
Alewood PF.
Andrews PR.
Tetrahedron
1993,
49:
3467
<A NAME="RA33603ST-56">56 </A>
Values of the Cα
i
-Cα
ι
+
3 distance (dα) of less than 7 Å were used to define the presence of a reverse-turn.
The range 0±30° for the virtual torsion angle β (C
i
-Cα
i+1
-Cα
i+2
-N
i+3
) was taken to indicate a tight reverse-turn.
[55 ]
Assignment of a low-energy conformation to a particular turn type was made where possible
on the basis of the ideal φ and ψ torsion angles (±30°) reported by Rose et al.
[49 ]
With regard to the intramolecular hydrogen bond parameters it was assumed that a hydrogen
bond is formed when the distance between the acceptor and the hydrogen of the donor
is smaller than 25 Å, the N-H···O bond angle is greater than 120°, and the H···O=C
angle is greater than 90°.
<A NAME="RA33603ST-57A">57a </A>
Takeuchi Y.
Marshall GR.
J. Am. Chem. Soc.
1998,
120:
5363 ; and references therein
<A NAME="RA33603ST-57B">57b </A>
Gillespie P.
Cicariello J.
Olson GL.
Biopolymers
1997,
43:
191
<A NAME="RA33603ST-58">58 </A>
The percentage of β-turn hydrogen bond resulting from Monte Carlo/Stochastic Dynamics
(MC/SD)
[79 ]
simulations in GB/SA chloroform or water of dipeptide and tetrapeptide analogues of
the indolizidinone ring system is generally lower than the corresponding value calculated
by the MC/EM protocol. A better agreement between the two computational approaches
is observed for the benzyl-substituted dipeptide mimic 59x and its longer derivatives.
[59 ]
It should be also noted that MC/SD simulations of some bicyclic systems showed convergence
problems. NMR and IR spectroscopic studies of sequences of different length will play
an important part in assessing the β-turn inducing potential of the bicyclic mimics.
<A NAME="RA33603ST-59A">59a </A>
Belvisi L.
Gennari C.
Mielgo A.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
1999,
389
<A NAME="RA33603ST-59B">59b </A>
Belvisi L.
Gennari C.
Madder A.
Mielgo A.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
5:
695
<A NAME="RA33603ST-60">60 </A>
Previous data
[59 ]
suggest that δNH < 62 ppm for a completely non-hydrogen-bonded peptide amide or carbamate
proton.
<A NAME="RA33603ST-61A">61a </A>
Gellman SH.
Dado GP.
Liang GB.
Adams RB.
J. Am. Chem. Soc.
1991,
113:
1164
<A NAME="RA33603ST-61B">61b </A>
Gellman SH.
Desper JM.
Liang GB.
J. Am. Chem. Soc.
1993,
115:
925
<A NAME="RA33603ST-62">62 </A>
The amide I region of the IR spectrum is predominately due to the C=O stretching vibration;
35y , 37y , 40y , and 42y have three different types of carbonyls: a secondary amide, a tertiary amide, and
a carbamate. On the basis of model compounds,
[80 ]
they are known to give rise to three distinct absorbances: at 1680-1675 cm-
1 for the free secondary amide, at 1665 cm-
1 for the free tertiary amide of the 6,5-fused bicyclic lactam, and at 1730 cm-
1 for the free carbamate. Hydrogen bonding to the carbonyl shifts the band to lower
frequency by 20-30 cm-
1 .
<A NAME="RA33603ST-63">63 </A>
Salimbeni A.
Paleari F.
Canevotti R.
Criscuoli M.
Lippi A.
Angiolini M.
Belvisi L.
Scolastico C.
Colombo L.
Bioorg. Med. Chem. Lett.
1997,
7:
2205
<A NAME="RA33603ST-64">64 </A>
Bode W.
Mayr I.
Baumann U.
Huber R.
Stone SR.
Hofsteenge J.
EMBO J.
1989,
8:
3467
<A NAME="RA33603ST-65A">65a </A>
Balasubramanian BN.
Advances in the Design and Development of Thrombin Inhibitors, Bioorg. Med. Chem.
1995,
3:
999
<A NAME="RA33603ST-65B">65b </A>
Tamura SY.
Goldman EA.
Brunck T.
Ripka WC.
Semple JE.
Bioorg. Med. Chem. Lett.
1997,
7:
331
<A NAME="RA33603ST-65C">65c </A>
Balasubramanian N.
St. Laurent DR.
Federici ME.
Meanwell NA.
Wright JJ.
Schumacher WA.
Seiler SM.
J. Med. Chem.
1993,
36:
300
<A NAME="RA33603ST-65D">65d </A>
Levy OE.
Semple JE.
Lim ML.
Reiner J.
Rote WE.
Dempsey E.
Richard BM.
Zhang E.
Tulinsky A.
Ripka WC.
Nutt RF.
J. Med. Chem.
1996,
39:
4527
<A NAME="RA33603ST-65E">65e </A>
Jackson CV.
Wilson HC.
Growe VG.
Schuman RT.
Gesellchen PD.
J. Cardiovasc. Pharmacol.
1993,
21:
587
<A NAME="RA33603ST-66">66 </A>
Rick W.
Methods of Enzymatic Analysis
Bergmeyer HU.
Academic Press;
New York:
1963.
<A NAME="RA33603ST-67">67 </A>
Cirillo R.
Lippi A.
Subissi A.
Agnelli G.
Criscuoli M.
Thromb. Haemostasis
1996,
76:
384
<A NAME="RA33603ST-68A">68a </A>
Hanessian S.
Sailes H.
Munro A.
Therrien E.
J. Org. Chem.
2003,
68:
7219
<A NAME="RA33603ST-68B">68b </A>
Siddiqui MA.
Préville P.
Tarazi M.
Warder SC.
Eby P.
Gorseth E.
Puumala K.
DiMaio J.
Tetrahedron Lett.
1997,
38:
8807
<A NAME="RA33603ST-69">69 </A>
Ruoslahti E.
Pierschbacher MD.
Science
1987,
238:
491
<A NAME="RA33603ST-70">70 </A>
Eliceiri BP.
Cheresh DAJ.
Clin. Invest.
1999,
103:
1227
<A NAME="RA33603ST-71">71 </A>
Ruoslahti E.
Ann. Rev. Cell Dev. Biol.
1996,
12:
697
<A NAME="RA33603ST-72A">72a </A>
Haubner R.
Gratias R.
Diefenbach B.
Goodman SL.
Jonczyk A.
Kessler H.
J. Am. Chem. Soc.
1996,
118:
7461
<A NAME="RA33603ST-72B">72b </A>
Haubner R.
Finsinger D.
Kessler H.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1374
<A NAME="RA33603ST-73A">73a </A>
Dechantsreiter MA.
Planker E.
Mathä B.
Lohof E.
Hölzemann G.
Jonczyk A.
Goodman SL.
Kessler H.
J. Med. Chem.
1999,
42:
3033
<A NAME="RA33603ST-73B">73b </A>
Lohof E.
Planker E.
Mang C.
Burkhart F.
Dechantsreiter MA.
Haubner R.
Wester H.-J.
Schwaiger M.
Hölzemann G.
Goodman SL.
Kessler H.
Angew. Chem. Int. Ed.
2000,
39:
2761
<A NAME="RA33603ST-73C">73c </A>
Schumann F.
Müller A.
Koksch M.
Müller G.
Sewald N.
J. Am. Chem. Soc.
2000,
122:
12009
<A NAME="RA33603ST-73D">73d </A>
Haubner R.
Schmitt W.
Hölzemann G.
Goodman SL.
Jonczyk A.
Kessler H.
J. Am. Chem. Soc.
1996,
118:
7881
<A NAME="RA33603ST-74A">74a </A>
Belvisi L.
Bernardi A.
Checchia A.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cupelli A.
Giannini G.
Carminati P.
Pisano C.
Org. Lett.
2001,
3:
1001
<A NAME="RA33603ST-74B">74b </A>
Belvisi L.
Caporale A.
Colombo M.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cati M.
Giannini G.
Pisano C.
Helv. Chim. Acta
2002,
85:
4353
<A NAME="RA33603ST-75">75 </A>
Kumar CC.
Nie H.
Rogers CP.
Malkowski M.
Maxwell E.
Catino JJ.
Armstrong LJ.
Pharmacol. Exp. Ther.
1997,
283:
843
<A NAME="RA33603ST-76">76 </A>
Xiong J.-P.
Stehle T.
Zhang R.
Joachimiak A.
Frech M.
Goodman SL.
Arnout MA.
Science
2002,
296:
151
<A NAME="RA33603ST-77">77 </A>
Weiner SJ.
Kollman PA.
Nguyen DT.
Case DA.
J. Comput. Chem.
1986,
7:
230
<A NAME="RA33603ST-78">78 </A>
Ponder JW.
Richards FM.
J. Comput. Chem.
1987,
8:
1016
<A NAME="RA33603ST-79">79 </A>
Guarnieri F.
Still WC.
J. Comput. Chem.
1994,
15:
1302
<A NAME="RA33603ST-80">80 </A>
Gennari C.
Gude M.
Potenza D.
Piarulli U.
Chem.-Eur. J.
1998,
4:
1924