RSS-Feed abonnieren
DOI: 10.1055/s-2004-829540
Design, Synthesis, Conformational Analysis and Application of Azabicycloalkane Amino Acids as Constrained Dipeptide Mimics
Publikationsverlauf
Publikationsdatum:
29. Juni 2004 (online)
Abstract
In the field of peptidomimetics, major efforts have been focused on the design and synthesis of conformationally constrained compounds that mimic or induce reverse-turn motifs of peptides and proteins which are thought to play important roles in recognition and biological activity. In this regard, a particularly attractive class of compounds are the azabicyclo[X.Y.0]alkane dipeptide mimics. We present our efforts on the design, synthesis, and conformational analysis of a series of rigid surrogates of dipeptide units for applications within constrained peptide analogues, for employment as inputs for combinatorial science and biological applications. Several general and versatile synthetic approaches have been conceived to deliver a variety of enantiomerically pure azabicycloalkanes. All of these methodologies rely on the construction of a 5-, 6-, or 7-membered lactam on a preformed proline based nucleus. Different strategies were adopted to perform the key cyclization step: a) radical addition to an olefinic double bond, b) alkylation of a malonate enolate, c) ring-closing metathesis (RCM), and d) lactam bond formation.
-
1 Introduction
-
2 Synthesis of Azabicyclo[X.Y.0]alkane Amino Acids
-
2.1 Radical Approach
-
2.1.1 Synthesis of Cyclization Precursors
-
2.2 Non-Radical Approaches
-
2.2.1 Synthesis of 5,5-, 6,5- and 7,5-Fused Bicyclic Lactams via Horner-Emmons Olefination and Lactam Bond Formation
-
2.2.2 Hydrophobic Appendages at C-3 Position via Malonate Alkylation or RCM
-
2.2.3 Spiro and Trinuclear Dipeptide Mimics via Lactam Bond Formation or RCM
-
2.2.4 Heteroatomic Side-Chain Functionalization via Lactam Bond Formation or RCM
-
3 Conformational Analysis of Azabicycloalkane Amino Acids
-
3.1 Molecular Modeling
-
3.2 Discussion of 1H NMR and IR Data
-
4 Incorporation of Azabicycloalkane Amino Acids into Bioactive Peptides
-
4.1 Thrombin Inhibitors
-
4.2 ανβ3-Integrin Ligands
Key words
peptidomimetic - peptide secondary structure - azabicycloalkane amino acids - biological activity - conformational analysis
- Recent reviews for design and synthesis of ‘dipeptide-turn mimetics’:
-
1a
Halab L.Gosselin F.Lubell WD. Biopolym. (Pept. Sci.) 2000, 55: 101 -
1b
Hanessian S.McNaughton-Smith G.Lombart H.-G.Lubell WD. Tetrahedron 1997, 53: 12789 -
1c Reviews for the applications of peptidomimetics including turn mimetics:
Giannis A.Kolter T. Angew. Chem., Int. Ed. Engl. 1994, 33: 1699 - Reviews regarding conformational and topographical considerations in designing peptidomimetics including turn mimetics:
-
2a
Hruby VJ. Life Sci. 1982, 31: 189 -
2b
Hruby VJ.Al-Obeidi F.Kazmierski WM. Biochem. J. 1990, 268: 249 -
2c
Hruby VJ.Balse PM. Curr. Top. Med. Chem. 2000, 7: 945 - Indolizidin-2-one amino acids:
-
3a
Hanessian S.Ronan B.Laoui A. Bioorg. Med. Chem. Lett. 1994, 4: 1397 -
3b
Li W.Hanau CE.d’Avignon A.Moeller KD. J. Org. Chem. 1995, 60: 8155 -
3c
Hanessian S.McNaughton-Smith G. Bioorg. Med. Chem. Lett. 1996, 6: 1567 -
3d
Li W.Moeller KD. J. Am. Chem. Soc. 1996, 118: 10106 -
3e
Wessig P. Tetrahedron Lett. 1999, 40: 5987 -
3f
Boatman PD.Ogbu CO.Eguchi M.Kim H.-O.Nakanishi H.Cao B.Shea JP.Kahn M. J. Med. Chem. 1999, 42: 1367 -
3g
Estiarte MA.Rubiralta M.Diez A.Thormann M.Giralt E. J. Org. Chem. 2000, 65: 6992 -
3h
Mulzer J.Schulzchen F.Bats J.-W. Tetrahedron 2000, 56: 4289 -
3i
Beal LM.Liu B.Chu W.Moeller KD. Tetrahedron 2000, 56: 10113 -
3j
Wang W.Xiong C.Hruby VJ. Tetrahedron Lett. 2001, 42: 3159 -
3k
Zhang X.Jiang W.Schmitt AC. Tetrahedron Lett. 2001, 42: 4943 -
3l
Millet R.Domarkas J.Rombaux P.Rigo B.Houssin R.Hénichart J.-P. Tetrahedron Lett. 2002, 43: 5087 -
3m
Zhang J.Xiong C.Wang W.Ying J.Hruby VJ. Org. Lett. 2002, 4: 4029 -
3n
Sun H.Moeller KD. Org. Lett. 2002, 4: 1547 -
3o
Wang W.Yang J.Ying J.Xiong C.Zhang J.Cai C.Hruby VJ. J. Org. Chem. 2002, 67: 6353 -
3p
Zhang J.Xiong C.Ying J.Wang W.Hruby VJ. Org. Lett. 2003, 5: 3115 -
3q
Gardiner J.Abell AD. Tetrahedron Lett. 2003, 44: 4227 - Indolizidin-9-one:
-
4a
Gosselin F.Lubell WD. J. Org. Chem. 1998, 63: 7463 -
4b
De La Figuera N.Rosas I.Garcia-Lopez MT.Gonzalez-Muniz R. J. Chem. Soc., Chem. Comm. 1994, 613 -
4c
Lamazzi C.Carbonnel S.Calinaud P.Troin Y. Heterocycles 2003, 60: 1447 -
4d
Shimizu M.Nemoto H.Kakuda H.Takahata H. Heterocycles 2003, 59: 245 - Pyrroloazepinone amino acids:
-
5a
Tremmel P.Geyer A. J. Am. Chem. Soc. 2002, 124: 8548 -
5b
Gosselin F.Lubell WD. J. Org. Chem. 2000, 65: 2163 -
5c
Geyer A.Moser F. Eur. J. Org. Chem. 2000, 1113 - Other examples:
-
6a
Robl JA. Tetrahedron Lett. 1994, 35: 393 -
6b
Robl JA.Cimarusti MP.Simpkins LM.Weller HN.Pan YY.Malley M.Di Marco JD. J. Am. Chem. Soc. 1994, 116: 2348 -
6c
Robl JA.Karanewsky DS.Asaad MM. Tetrahedron Lett. 1995, 36: 1593 -
6d
Mueller R.Revesz L. Tetrahedron Lett. 1994, 35: 4091 -
6e
De Lombaert S.Blanchard L.Stamford LB.Sperbeck DM.Grim MD.Jenson TM.Rodriguez HR. Tetrahedron Lett. 1994, 35: 7513 -
6f
Lombart HG.Lubell WD. J. Org. Chem. 1994, 59: 6147 -
6g
Nagai U.Sato K.Nakamura R.Kato R. Tetrahedron 1993, 49: 3577 - 7
Colombo L.Di Giacomo M.Papeo G.Cargo O.Scolastico C.Manzoni L. Tetrahedron Lett. 1994, 35: 4031 - 8
Colombo L.Di Giacomo M.Scolastico C.Manzoni L.Belvisi L.Molteni V. Tetrahedron Lett. 1995, 36: 625 - 9
Colombo L.Di Giacomo M.Belvisi L.Manzoni L.Scolastico C. Gazz. Chim. Ital. 1996, 126: 543 - 10
Manzoni L.Belvisi L.Scolastico C. Synlett 2000, 1287 - 11
Baldwin EJ. J. Chem. Soc., Chem. Commun. 1976, 734 - Calculations were performed employing a modified version of the MM2 force field model for intramolecular radical addition to alkenes developed by Houk and now incorporated in the program MacroModel. See:
-
12a
Belvisi L.Gennari C.Poli G.Scolastico C.Salom B.Vassallo M. Tetrahedron 1992, 48: 3945 -
12b
Houk KN.Paddon-Row MN.Spellmeyer DC.Rondan G.Nagase S. J. Org. Chem. 1987, 52: 959 -
12c
Mohamadi F.Richards NGJ.Guida WC.Liskamp R.Caufield C.Chang G.Hendrickson T.Still WC. J. Comput. Chem. 1990, 11: 440 - 13
Viehe HG.Merény R.Stella L.Janousek Z. Angew. Chem., Int. Ed. Engl. 1979, 18: 917 -
14a
Cignarella G.Nathansohon G. J. Org. Chem. 1961, 26: 1500 -
14b
Boutelje J.Hjalmarsson M.Hult K.Lindbäck M.Norin T. Bioorg. Chem. 1988, 16: 364 - 15
Peterson JS.Felles G.Rapoport H. J. Am. Chem. Soc. 1984, 106: 4539 - 16
Chiesa MV.Manzoni L.Scolastico C. Synlett 1996, 441 - 17
Greco PA.Jaw JY.Claremond DA.Nicolaou KC. J. Org. Chem. 1981, 46: 1215 -
18a
Lombart H.-G.Lubell WD. J. Org. Chem. 1996, 61: 9437 -
18b
Polyak F.Lubell WD. J. Org. Chem. 1998, 63: 7463 -
18c
Polyak F.Lubell WD. J. Org. Chem. 2001, 66: 1171 - 19
Dietrich E.Lubell WD. J. Org. Chem. 2003, 68: 6988 - 20
Angiolini M.Araneo S.Belvisi L.Cesarotti E.Checchia A.Crippa L.Manzoni L.Scolastico C. Eur. J. Org. Chem. 2000, 2571 ; the procedures reported in this paper have been also used for the gram scale preparation of the bicyclic lactams - 21
Collado I.Ezquerra J.Vaquero JJ.Pedregal C. Tetrahedron Lett. 1994, 43: 8037 - 22
Schmidt U.Lieberkneckt A.Wild J. Synthesis 1984, 53 -
23a
Salimbeni A.Paleari F.Canevotti R.Criuscuoli M.Lippi A.Angiolini M.Belvisi L.Scolastico C.Colombo L. Bioorg. Med. Chem. Lett. 1997, 7: 2205 -
23b
Colombo L.Di Giacomo M.Brusotti G.Sardone N.Angiolini M.Belvisi L.Maffioli S.Manzoni L.Scolastico C. Tetrahedron 1998, 54: 5325 - 25
Högberg T.Ström P.Ebner M.Rämsby SJ. J. Org. Chem. 1987, 52: 2033 - 26
Kajigaeshi S.Asano K.Fujisaki S.Kakinami T.Okamoto T. Chem. Lett. 1989, 463 - 27
Colombo L.Di Giacomo M.Vinci V.Colombo M.Manzoni L.Scolastico C. Tetrahedron 2003, 59: 4501 - For reviews on catalytic olefin metathesis see:
-
28a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
28b
Phillips AJ.Abell AD. Aldrichimica Acta 1999, 32: 75 -
28c
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
28d
Trnka TM.Grubbs RH. Acc. Chem Res. 2001, 34: 18 -
28e
Hoveyda AH.Schrock RR. Chem.-Eur. J. 2001, 7: 945 - 29
Grossmith CE.Senia F.Wagner J. Synlett 1999, 1660 -
30a
Beal LM.Moeller KD. Tetrahedron Lett. 1998, 39: 4639 -
30b
Beal LM.Liu B.Chu W.Moeller KD. Tetrahedron 2000, 56: 10113 -
30c
Hoffmann T.Lanig H.Waibel R.Gmeiner P. Angew. Chem. Int. Ed. 2001, 40: 3361 -
30d
Sung H.Sunghoon M.Beak P. J. Org. Chem. 2001, 66: 9056 - 31
Brocherieux-Lanoy S.Dhimane H.Poupon J.-C.Vanucci C.Lhommet G. J. Chem. Soc., Perkin Trans. 1 1997, 2163 - 32
Shono T.Fujita T.Matsumura Y. Chem. Lett. 1991, 1: 81 -
33a
Berkovitz DB.McFadden JM.Chisowa E.Semerad CL. J. Am. Chem. Soc. 2000, 122: 11031 -
33b
Berkovitz DB.McFadden JM.Sloss MK. J. Org. Chem. 2000, 65: 2907 -
33c
Berkovitz DB.Chisowa E.McFadden JM. Tetrahedron 2001, 57: 6329 - 35
Frérot E.Coste J.Pantaloni A.Dufour M.-N.Jouin P. Tetrahedron 1991, 47: 259 -
36a
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 -
36b
Chatterjee AK.Grubbs RH. Org. Lett. 1999, 1: 1751 - 37
Garber SB.Kingsbury JS.Gray BL.Hoveyda AH. J. Am. Chem. Soc. 2000, 122: 8168 - 38
Manzoni L.Colombo M.May E.Scolastico C. Tetrahedron 2001, 57: 249 - 39
Belvisi L.Colombo L.Colombo M.Di Giacomo M.Manzoni L.Vodopivec B.Scolastico C. Tetrahedron 2001, 57: 6463 - 40
Crossley MJ.Reid RC. J. Chem. Soc., Chem. Commun. 1994, 2237 -
41a For a review on pyroglutamic acids see:
Nájera C.Yus M. Tetrahedron: Asymmetry 1999, 10: 2245 ; and references cited therein -
41b
Shono T.Matsumura Y.Tsubata K.Sugihara Y.Yamane S.-I.Kanazawa T.Aoki T. J. Am. Chem. Soc. 1982, 104: 6697 -
41c
Shono T.Matsumura Y.Tsubata K. Org. Synth. 1985, 63: 206 - 42
Ezquerra J.Pedregal C.Rubio A. J. Org. Chem. 1994, 59: 4327 ; and references therein -
43a
Pedregal C.Ezquerra J.Escribano A.Carreño MC.Garcia Ruano JL. Tetrahedron Lett. 1994, 35: 7277 -
43b
Ezquerra J.Pedregal C.Yruretagoyena B.Rubio A.Carreño MC.Escribano A.Garcia Ruano J. J. Org. Chem. 1995, 60: 2925 -
44a
Russowsky D.Petersen RZ.Godoi MN.Pilli RA. Tetrahedron Lett. 2000, 41: 9939 -
44b
Onishi Y.Ito T.Ysuda M.Baba A. Eur. J. Org. Chem. 2002, 1578 - 45
Hanessian S.Margarita R. Tetrahedron Lett. 1998, 39: 5887 -
46a
Hayen A.Kock R.Saak W.Haase D.Metzger JO. J. Am. Chem. Soc. 2000, 122: 12458 -
46b
Mathias LJ. Synthesis 1979, 561 -
47a
Artale E.Banfi G.Belvisi L.Colombo L.Colombo M.Manzoni L.Scolastico C. Tetrahedron 2003, 59: 6241 -
47b
Bracci A.Manzoni L.Scolastico C. Synthesis 2003, 2363 - 48
McClure KF.Renold P.Kemp DS. J. Org. Chem. 1995, 60: 454 - 49
Rose GD.Gierasch LM.Smith JA. Adv. Prot. Chem. 1985, 37: 1 - 50
Chang G.Guida WC.Still WC. J. Am. Chem. Soc. 1989, 11: 4379 - 51
Still WC.Tempczyk A.Hawley RC.Hendrickson T. J. Am. Chem. Soc. 1990, 112: 6127 - 52
Garcia-Moreno EB.Dwyer JJ.Gittis AG.Lattman EE.Spencer DS.Sites WE. Biophys. Chem. 1997, 64: 211 - 53
Belvisi L.Bernardi A.Manzoni L.Potenza D.Scolastico C. Eur. J. Org. Chem. 2000, 2563 - 55
Ball JB.Hughes RA.Alewood PF.Andrews PR. Tetrahedron 1993, 49: 3467 -
57a
Takeuchi Y.Marshall GR. J. Am. Chem. Soc. 1998, 120: 5363 ; and references therein -
57b
Gillespie P.Cicariello J.Olson GL. Biopolymers 1997, 43: 191 -
59a
Belvisi L.Gennari C.Mielgo A.Potenza D.Scolastico C. Eur. J. Org. Chem. 1999, 389 -
59b
Belvisi L.Gennari C.Madder A.Mielgo A.Potenza D.Scolastico C. Eur. J. Org. Chem. 2000, 5: 695 -
61a
Gellman SH.Dado GP.Liang GB.Adams RB. J. Am. Chem. Soc. 1991, 113: 1164 -
61b
Gellman SH.Desper JM.Liang GB. J. Am. Chem. Soc. 1993, 115: 925 - 63
Salimbeni A.Paleari F.Canevotti R.Criscuoli M.Lippi A.Angiolini M.Belvisi L.Scolastico C.Colombo L. Bioorg. Med. Chem. Lett. 1997, 7: 2205 - 64
Bode W.Mayr I.Baumann U.Huber R.Stone SR.Hofsteenge J. EMBO J. 1989, 8: 3467 -
65a
Balasubramanian BN. Advances in the Design and Development of Thrombin Inhibitors, Bioorg. Med. Chem. 1995, 3: 999 -
65b
Tamura SY.Goldman EA.Brunck T.Ripka WC.Semple JE. Bioorg. Med. Chem. Lett. 1997, 7: 331 -
65c
Balasubramanian N.St. Laurent DR.Federici ME.Meanwell NA.Wright JJ.Schumacher WA.Seiler SM. J. Med. Chem. 1993, 36: 300 -
65d
Levy OE.Semple JE.Lim ML.Reiner J.Rote WE.Dempsey E.Richard BM.Zhang E.Tulinsky A.Ripka WC.Nutt RF. J. Med. Chem. 1996, 39: 4527 -
65e
Jackson CV.Wilson HC.Growe VG.Schuman RT.Gesellchen PD. J. Cardiovasc. Pharmacol. 1993, 21: 587 - 66
Rick W. Methods of Enzymatic AnalysisBergmeyer HU. Academic Press; New York: 1963. - 67
Cirillo R.Lippi A.Subissi A.Agnelli G.Criscuoli M. Thromb. Haemostasis 1996, 76: 384 -
68a
Hanessian S.Sailes H.Munro A.Therrien E. J. Org. Chem. 2003, 68: 7219 -
68b
Siddiqui MA.Préville P.Tarazi M.Warder SC.Eby P.Gorseth E.Puumala K.DiMaio J. Tetrahedron Lett. 1997, 38: 8807 - 69
Ruoslahti E.Pierschbacher MD. Science 1987, 238: 491 - 70
Eliceiri BP.Cheresh DAJ. Clin. Invest. 1999, 103: 1227 - 71
Ruoslahti E. Ann. Rev. Cell Dev. Biol. 1996, 12: 697 -
72a
Haubner R.Gratias R.Diefenbach B.Goodman SL.Jonczyk A.Kessler H. J. Am. Chem. Soc. 1996, 118: 7461 -
72b
Haubner R.Finsinger D.Kessler H. Angew. Chem., Int. Ed. Engl. 1997, 36: 1374 -
73a
Dechantsreiter MA.Planker E.Mathä B.Lohof E.Hölzemann G.Jonczyk A.Goodman SL.Kessler H. J. Med. Chem. 1999, 42: 3033 -
73b
Lohof E.Planker E.Mang C.Burkhart F.Dechantsreiter MA.Haubner R.Wester H.-J.Schwaiger M.Hölzemann G.Goodman SL.Kessler H. Angew. Chem. Int. Ed. 2000, 39: 2761 -
73c
Schumann F.Müller A.Koksch M.Müller G.Sewald N. J. Am. Chem. Soc. 2000, 122: 12009 -
73d
Haubner R.Schmitt W.Hölzemann G.Goodman SL.Jonczyk A.Kessler H. J. Am. Chem. Soc. 1996, 118: 7881 -
74a
Belvisi L.Bernardi A.Checchia A.Manzoni L.Potenza D.Scolastico C.Castorina M.Cupelli A.Giannini G.Carminati P.Pisano C. Org. Lett. 2001, 3: 1001 -
74b
Belvisi L.Caporale A.Colombo M.Manzoni L.Potenza D.Scolastico C.Castorina M.Cati M.Giannini G.Pisano C. Helv. Chim. Acta 2002, 85: 4353 - 75
Kumar CC.Nie H.Rogers CP.Malkowski M.Maxwell E.Catino JJ.Armstrong LJ. Pharmacol. Exp. Ther. 1997, 283: 843 - 76
Xiong J.-P.Stehle T.Zhang R.Joachimiak A.Frech M.Goodman SL.Arnout MA. Science 2002, 296: 151 - 77
Weiner SJ.Kollman PA.Nguyen DT.Case DA. J. Comput. Chem. 1986, 7: 230 - 78
Ponder JW.Richards FM. J. Comput. Chem. 1987, 8: 1016 - 79
Guarnieri F.Still WC. J. Comput. Chem. 1994, 15: 1302 - 80
Gennari C.Gude M.Potenza D.Piarulli U. Chem.-Eur. J. 1998, 4: 1924
References
Steward, J. J. P. MOPAC Version 60, F. J. Seiler Research Laboratory U. S. Air Force Academy CO 80840, QCPE 455.
34The following activating agents were used in different conditions of temperature and solvent: DCC CIP/HOAt HATU EDC/HOAt DPPA and PyBop.
54Molecular mechanics calculations were performed within the framework of MacroModel [12c] version 55 using the MacroModel implementation of the Amber all-atom force field [77] (denoted AMBER*). The torsional space of each molecule was randomly varied with the usage-directed Monte Carlo conformational search of Chang Guida and Still. [50] Ring-closure bonds were defined in the six- and seven-membered rings of the 6,5- and 7,5-fused bicyclic lactams, respectively. Amide bonds were included among the rotatable bonds. For each search at least 2000 starting structures for each variable torsion angle were generated and minimized until the gradient was less than 0.05 kJ/Åmol using the truncated Newton-Raphson method [78] implemented in MacroModel. Duplicate conformations and those with an energy greater than 6 kcal/mol above the global minimum were discarded. The nature of the stationary points individuated was tested by computing the eigenvalues of the second-derivative matrix.
56Values of the Cα i -Cα ι + 3 distance (dα) of less than 7 Å were used to define the presence of a reverse-turn. The range 0±30° for the virtual torsion angle β (C i -Cα i+1 -Cα i+2 -N i+3 ) was taken to indicate a tight reverse-turn. [55] Assignment of a low-energy conformation to a particular turn type was made where possible on the basis of the ideal φ and ψ torsion angles (±30°) reported by Rose et al. [49] With regard to the intramolecular hydrogen bond parameters it was assumed that a hydrogen bond is formed when the distance between the acceptor and the hydrogen of the donor is smaller than 25 Å, the N-H···O bond angle is greater than 120°, and the H···O=C angle is greater than 90°.
58The percentage of β-turn hydrogen bond resulting from Monte Carlo/Stochastic Dynamics (MC/SD) [79] simulations in GB/SA chloroform or water of dipeptide and tetrapeptide analogues of the indolizidinone ring system is generally lower than the corresponding value calculated by the MC/EM protocol. A better agreement between the two computational approaches is observed for the benzyl-substituted dipeptide mimic 59x and its longer derivatives. [59] It should be also noted that MC/SD simulations of some bicyclic systems showed convergence problems. NMR and IR spectroscopic studies of sequences of different length will play an important part in assessing the β-turn inducing potential of the bicyclic mimics.
60Previous data [59] suggest that δNH < 62 ppm for a completely non-hydrogen-bonded peptide amide or carbamate proton.
62The amide I region of the IR spectrum is predominately due to the C=O stretching vibration; 35y, 37y, 40y, and 42y have three different types of carbonyls: a secondary amide, a tertiary amide, and a carbamate. On the basis of model compounds, [80] they are known to give rise to three distinct absorbances: at 1680-1675 cm- 1 for the free secondary amide, at 1665 cm- 1 for the free tertiary amide of the 6,5-fused bicyclic lactam, and at 1730 cm- 1 for the free carbamate. Hydrogen bonding to the carbonyl shifts the band to lower frequency by 20-30 cm- 1.