References
<A NAME="RG16304ST-1">1</A>
Dondoni A.
Marra A.
Richichi B.
Synlett
2003,
2345
<A NAME="RG16304ST-2A">2a</A>
Hanessian S.
McNaughton-Smith G.
Lombart H.-G.
Lubell WD.
Tetrahedron
1997,
53:
12789
<A NAME="RG16304ST-2B">2b</A>
Halab L.
Gosselin F.
Lubell WD.
Biopolymers
2000,
55:
101
<A NAME="RG16304ST-2C">2c</A>
Dietrich E.
Lubell WD.
J. Org. Chem.
2003,
68:
6988
<A NAME="RG16304ST-3A">3a</A>
Gillespie P.
Cicariello J.
Olson JL.
Biopolymers
1997,
43:
191
<A NAME="RG16304ST-3B">3b</A>
Takeuchi Y.
Marshall GR.
J. Am. Chem. Soc.
1998,
120:
5363
<A NAME="RG16304ST-3C">3c</A>
Belvisi L.
Bernardi A.
Manzoni L.
Potenza D.
Scolastico C.
Eur. J. Org. Chem.
2000,
2563
<A NAME="RG16304ST-4">4</A>
Belvisi L.
Bernardi A.
Checchia A.
Manzoni L.
Potenza D.
Scolastico C.
Castorina M.
Cupelli A.
Giannini G.
Carminati P.
Pisano C.
Org. Lett.
2001,
3:
1001
<A NAME="RG16304ST-5A">5a</A>
Haubner R.
Finsinger D.
Kessler H.
Angew. Chem., Int. Ed. Engl.
1997,
36:
1374
<A NAME="RG16304ST-5B">5b</A>
Gottschalk K.-E.
Kessler H.
Angew. Chem. Int. Ed.
2002,
41:
3767
<A NAME="RG16304ST-5C">5c</A>
Hynes RO.
Nat. Med. (N. Y., NY, U. S.)
2002,
8:
918
<A NAME="RG16304ST-6A">6a</A>
Dondoni A.
Giovannini PP.
Perrone D.
J. Org. Chem.
2002,
62:
7203
<A NAME="RG16304ST-6B">6b</A>
This article dealt with the preparation of O- and N-benzyl-protected 3,4-dihydroxy-5-hydroxymethyl-2-thiazolyl-pyrrolidines. The selective
debenzylation of the primary hydroxy group to give compound 1 has been described (ref.
[1]
). Under the same conditions, the 5-hydroxymethyl pyrrolidines 5 (Scheme
[2]
) and 8 (Scheme
[3]
) were obtained from the corresponding perbenzylated precursors.
<A NAME="RG16304ST-7">7</A>
Analytical data for compound 5. [α]D = -4.1 (c 1.0, CHCl3). 1H NMR (400 MHz, CDCl3 + D2O): δ = 7.80 (d, 1 H, J = 3.3 Hz, Th), 7.46-7.22 (m, 16 H, 3 Ph, Th), 4.97 and 4.75 (2 d, 2 H, J = 11.6 Hz, PhCH
2O), 4.85 (d, 1 H, J
2,3 = 1.5 Hz, H-2), 4.53 and 4.40 (2 d, 2 H, J = 11.7 Hz, PhCH
2O), 4.31 (dd, 1 H, J
3,4 = 6.1, J
4,5 = 7.2 Hz, H-4), 4.14 and 3.98 (2 d, 2 H, J = 13.9 Hz, PhCH
2N), 4.06 (dd, 1 H, H-3), 3.82-3.76 (m, 2 H, 2 H-6), 3.40 (ddd, 1 H, J
5,6a = J
5,6b = 2.7 Hz, H-5).
<A NAME="RG16304ST-8">8</A>
General Procedure for the Mitsunobu Reaction: To a refluxing solution of 6-OH thiazolylpyrrolidine (150 mg, 0.30 mmol), PPh3 (120 mg, 0.45 mmol), and phenol or carboxylic acid derivative (0.60 mmol) in anhyd
THF (6 mL) was added DIAD (90 µL, 0.45 mmol). The reaction mixture was stirred at
80 °C for 2 h and then concentrated. The residue was eluted from a column of silica
gel (cyclohexane-EtOAc) to give the pyrrolidine 6 and the piperidine 7. Compound 6a. [α]D = +6.8 (c 0.9, CHCl3). Compound 7a. [α]D = -32.0 (c 1.4, CHCl3). Compound 6b. [α]D = -13.7 (c 1.0, CHCl3). Compound 7b. [α]D = -25.5 (c 0.8, CHCl3). Compound 6c. [α]D = -39.2 (c 1.0, CHCl3). 1H NMR (400 MHz, C6D6): δ = 7.57 and 6.55 (2 d, 2 H, J = 3.3 Hz, Th), 7.34-6.90 (m, 25 H, 5 Ph), 5.04 (dd, 1 H, J
5,6a = 2.4, J
6a,6b = 12.5 Hz, H-6a), 4.78 (s, 1 H, Ph2CH), 4.65 and 4.60 (2 d, 2 H, J = 12.2 Hz, PhCH
2O), 4.58 (dd, 1 H, J
5,6b = 7.2 Hz, H-6b), 4.54 (d, 1 H, J
2,3 = 1.5 Hz, H-2), 4.18 and 4.08 (2 d, 2 H, J = 11.9 Hz, PhCH
2O), 4.10 (dd, 1 H, J
3,4 = 5.2, J
4,5 = 6.6 Hz, H-4), 3.86 (dd, 1 H, H-3), 3.78 (ddd, 1 H, H-5), 3.68 (s, 2 H, PhCH
2N). Compound 7c. [α]D = -36.0 (c 0.4, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, 1 H, J = 3.2 Hz, Th), 7.32-7.13 and 6.93-6.89 (2 m, 26 H, 5 Ph, Th), 5.06 (ddd, 1 H, J
4,5 = 1.8, J
5,6a = 4.7, J
5,6b = 10.5 Hz, H-5), 4.97 (s, 1 H, Ph2CH), 4.55 and 4.33 (2 d, 2 H, J = 11.8 Hz, PhCH
2O), 4.29 and 4.07 (2 d, 2 H, J = 11.9 Hz, PhCH
2O), 4.29 (d, 1 H, J
2,3 = 9.5 Hz, H-2), 4.10 (dd, 1 H, J
3,4 = 1.7 Hz, H-4), 3.73 and 3.17 (2 d, 2 H, J = 13.8 Hz, PhCH
2N), 3.71 (dd, 1 H, H-3), 2.78 (dd, 1 H, J
6a,6b = 10.3 Hz, H-6a), 2.72 (dd, 1 H, H-6b).
<A NAME="RG16304ST-9">9</A>
Analytical data: compound 8: [α]D = +16.4 (c 0.6, CHCl3). Compound 9a: [α]D = -4.6 (c 0.6, CHCl3). Compound 10a: [α]D = +10.0 (c 0.7, CHCl3). Compound 9b: [α]D = +10.9 (c 0.7, CHCl3). Compound 10b: [α]D = +20.0 (c 0.7, CHCl3).
<A NAME="RG16304ST-10">10</A>
Hughes DL.
Org. Prep. Proc. Int.
1996,
28:
127
<A NAME="RG16304ST-11">11</A> For a recent example of the involvement of an aziridinium ion intermediate in
pyrrolidine to piperidine conversion and a collection of references on earlier examples,
see:
Verhelst SHL.
Paez Martinez B.
Timmer MSM.
Lodder G.
van der Marel GA.
Overkleeft HS.
van Boom JH.
J. Org. Chem.
2003,
68:
9598
<A NAME="RG16304ST-12A">12a</A>
Iminosugars as Glycosidase Inhibitors. Nojirimycin and Beyond
Stütz AE.
Wiley-VCH;
Weinheim:
1999.
<A NAME="RG16304ST-12B">12b</A>
Look GC.
Fotsch CH.
Wong C.-H.
Acc. Chem. Res.
1993,
26:
182
<A NAME="RG16304ST-12C">12c</A>
Asano N.
Curr. Top. Med. Chem.
2003,
3:
471
<A NAME="RG16304ST-12D">12d</A>
Greimel P.
Spreitz J.
Stütz AE.
Wrodnigg TM.
Curr. Top. Med. Chem.
2003,
3:
513
<A NAME="RG16304ST-13A">13a</A>
Tyms AS.
Taylor DL.
Sunkara PS.
Kang MSL. In
Design of Anti-AIDS Drugs
DeClerq E.
Elsevier;
New York:
1990.
p.257-318
<A NAME="RG16304ST-13B">13b</A>
Winchester B.
Fleet GWJ.
Glycobiology
1992,
2:
199
<A NAME="RG16304ST-14">14</A>
Dondoni A.
Marra A.
Scherrmann M.-C.
Bertolasi V.
Chem.-Eur. J.
2001,
7:
1371
<A NAME="RG16304ST-15">15</A>
A mixture of 7c (40 mg, 0.06 mmol), activated 4 Å powdered molecular sieves (140 mg), and anhyd MeCN
(0.7 mL) was stirred at r.t. for 10 min, then methyl triflate (13 µL, 0.12 mmol) was
added. The suspension was stirred at r.t. for 15 min and then concentrated to dryness
without filtering off the molecular sieves. To a cooled (0 °C), stirred suspension
of the crude N-methylthiazolium salt in MeOH (0.7 mL) was added NaBH4 (5 mg, 0.13 mmol). The mixture was stirred at r.t. for additional 10 min, diluted
with acetone, filtered through a pad of Celite, and concentrated. A solution of the
residue in Et2O (30 mL) was washed with H2O, dried (Na2SO4), and concentrated. To a vigorously stirred solution of the thiazolidines in MeCN
(1 mL) was added H2O (0.1 mL) and then AgNO3 (12 mg, 0.07 mmol). The mixture was stirred at r.t. for 5 min, then diluted with
1 M phosphate buffer at pH 7 (10 mL) and partially concentrated to remove MeCN (bath
temperature not exceeding 40 °C). The suspension was extracted with Et2O (3 × 20 mL), the combined organic phases were dried (Na2SO4), and concentrated to give a yellow syrup. A solution of the residue in Et2O (ca. 30 mL) was filtered through a pad of Celite and concentrated to afford 11 (30 mg, 82%) as a colorless syrup ca. 95% pure by 1H NMR analysis. 1H NMR (400 MHz, CDCl3): δ = 9.41 (d, 1 H, J = 4.7 Hz, CHO), 7.35-7.20 and 7.12-7.07 (2 m, 25 H, 5 Ph), 4.96 (s, 1 H, Ph2CH), 4.91 (ddd, 1 H, J
4,5 = 2.4, J
5,6a = 4.9, J
5,6b = 10.7 Hz, H-5), 4.50 and 4.30 (2 d, 2 H, J = 11.9 Hz, PhCH
2O), 4.44 and 4.32 (2 d, 2 H, J = 11.3 Hz, PhCH
2O), 4.12 (dd, 1 H, J
3,4 = 2.0 Hz, H-4), 3.72 and 3.34 (2 d, 2 H, J = 13.8 Hz, PhCH
2N), 3.71 (dd, 1 H, J
2,3 = 9.7 Hz, H-3), 3.34 (dd, 1 H, H-2), 2.71 (dd, 1 H, J
6a,6b = 10.6 Hz, H-6a), 2.60 (dd, 1 H, H-6b).
<A NAME="RG16304ST-16">16</A>
To a cooled (0 °C), stirred solution of 11 (30 mg, 0.05 mmol) in 5:2 Et2O-MeOH (1 mL) was added NaBH4 (5 mg, 0.13 mmol). The mixture was stirred at r.t. for 5 min, diluted with acetone
(0.1 mL) and then 1 M phosphate buffer at pH 7 (5 mL), and partially concentrated
to remove the organic solvents. The suspension was extracted with CH2Cl2 (3 × 20 mL), the combined organic phases were dried (Na2SO4), and concentrated. The residue was eluted from a column of silica gel with 3:1 cyclohexane-EtOAc
to give 12 (27 mg, 90%) as a syrup; [α]D = +2.7 (c 0.6, CHCl3). 1H NMR (400 MHz, C6D6): δ = 7.32-6.92 (m, 25 H, 5 Ph), 4.94 (ddd, 1 H, J
1a,2 = 10.6, J
1b,2 = 4.2, J
2,3 = 2.3 Hz, H-2), 4.92 (s, 1 H, Ph2CH), 4.52 and 4.36 (2 d, 2 H, J = 11.6 Hz, PhCH
2O), 4.24 and 4.19 (2 d, 2 H, J = 11.5 Hz, PhCH
2O), 4.06 (dd, 1 H, J
3,4 = 2.4 Hz, H-3), 3.92 (ddd, 1 H, J
5,6a = 1.8, J
6a,6b = 11.0, J
6a,OH = 9.7 Hz, H-6a), 3.73 and 2.87 (2 d, 2 H, J = 14.0 Hz, PhCH
2N), 3.73 (dd, 1 H, J
5,6b = 1.8 Hz, H-6b), 3.54 (dd, 1 H, J
4,5 = 9.6 Hz, H-4), 2.83 (dd, 1 H, J
1a,1b = 10.4 Hz, H-1a), 2.77 (dd, 1 H, H-1b), 2.76 (ddd, 1 H, H-5), 2.01 (br d, 1 H, OH).
<A NAME="RG16304ST-17">17</A>
A solution of 12 (31 mg, 0.05 mmol) in freshly prepared 0.1 M CH3ONa in CH3OH (2 mL) was kept at r.t. for 2 h, then neutralized with HOAc, and concentrated.
A solution of the residue in CH2Cl2 was washed with 1 M phosphate buffer at pH 7, dried (Na2SO4), and concentrated. The residue was eluted from a short column of silica gel with
EtOAc (containing 0.5% of Et3N) to give the 2-OH derivative (17 mg). A vigorously stirred mixture of the alcohol,
20% Pd(OH)2 on carbon (20 mg), and HOAc (2 mL) was degassed under vacuum and saturated with hydrogen
(by a H2-filled balloon) five times. The suspension was stirred at r.t. for 5 h under a slightly
positive pressure of hydrogen (balloon), then filtered through a plug of cotton and
concentrated. A solution of the crude tetrol in H2O was eluted from a column (0.5 × 3 cm, d × h) of freshly activated Dowex 1X8-200
(HO
-
form) to give pure 13 (6 mg, 72%); [α]D = -28.6 (c 0.2, H2O); lit.
[18]
[α]D = -35.2 (c 0.025, MeOH). ent-13: lit.
[19a]
[α]D = +25.7 (c 0.65, H2O); lit.
[19b]
[α]D = +28.1 (c 0.8, H2O). 1H NMR (400 MHz, D2O): δ = 3.92 (dd, 1 H, J
2,3 = J
3,4 = 2.8 Hz, H-3), 3.62 (dd, 1 H, J
5,6a = 3.0, J
6a,6b = 11.6 Hz, H-6a), 3.52 (ddd, 1 H, J
1a,2 = 5.1, J
1b,2 = 11.2 Hz, H-2), 3.46 (dd, 1 H, J
5,6b = 5.8 Hz, H-6b), 3.30 (dd, 1 H, J
4,5 = 10.3 Hz, H-4), 2.67 (dd, 1 H, J
1a,1b = 12.4 Hz, H-1a), 2.56 (ddd, 1 H, H-5), 2.50 (dd, 1 H, H-1b).
<A NAME="RG16304ST-18">18</A>
Altenbach H.-J.
Himmeldirk K.
Tetrahedron: Asymmetry
1995,
6:
1077
<A NAME="RG16304ST-19A">19a</A>
Asano N.
Oseki K.
Kizu H.
Matsui K.
J. Med. Chem.
1994,
37:
3701
<A NAME="RG16304ST-19B">19b</A>
Ikota N.
Hirano J.
Gamage R.
Nakagawa H.
Hama-Inaba H.
Heterocycles
1997,
46:
637
<A NAME="RG16304ST-19C">19c</A>
Wu W.-D.
Khim S.-K.
Zhang X.
Cederstrom EM.
Mariano PS.
J. Org. Chem.
1998,
63:
841
<A NAME="RG16304ST-19D">19d</A>
Ruiz M.
Ojea V.
Ruanova TM.
Quintela JM.
Tetrahedron: Asymmetry
2002,
13:
795