References
<A NAME="RD08104ST-1">1</A>
Part 41 in the series ‘Studies on Novel Synthetic Methodologies’.
<A NAME="RD08104ST-2A">2a</A>
Faber K.
Stueckler H.
Kappe T.
J. Heterocycl. Chem.
1984,
21:
1171
<A NAME="RD08104ST-2B">2b</A>
Johnson JV.
Rauckman S.
Beccanari PD.
Roth B.
J. Med. Chem.
1989,
32:
1942
<A NAME="RD08104ST-2C">2c</A>
Yamada N.
Kadowaki S.
Takahashi K.
Umeza K.
Biochem. Pharmacol.
1992,
44:
1211
<A NAME="RD08104ST-3">3</A>
Ramesh M.
Mohan PS.
Shanmugam P.
Tetrahedron
1984,
40:
4041
<A NAME="RD08104ST-4A">4a</A>
Boger DL.
Weinreb SM.
Hetero-Diels-Alder Methodology in Organic Synthesis
Academic Press;
San Diego:
1987.
Chap. 2 and 9.
<A NAME="RD08104ST-4B">4b</A>
Boger DL.
Weinreb SM.
Hetero-Diels-Alder Methodology in Organic Synthesis
Academic Press;
San Diego:
1987.
Chap. 9.
<A NAME="RD08104ST-4C">4c</A>
Cabral J.
Laszlo P.
Montaufier MT.
Tetrahedron Lett.
1988,
29:
547
<A NAME="RD08104ST-4D">4d</A>
Weinreb SM.
In Comprehensive Organic Synthesis
Vol. 5:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.401-449
<A NAME="RD08104ST-4E">4e</A>
Babu G.
Perumal PT.
Tetrahedron Lett.
1998,
39:
3225
<A NAME="RD08104ST-4F">4f</A>
Yadav JS.
Reddy BVS.
Srinivas R.
Madhuri Ch.
Ramalingam T.
Synlett
2001,
240
<A NAME="RD08104ST-5">5</A>
Ma Y.
Qian C.
Xie M.
Sun J.
J. Org. Chem.
1999,
64:
6462
<A NAME="RD08104ST-6A">6a</A>
Srinivas KVNS.
Das B.
J. Org. Chem.
2003,
68:
1165
<A NAME="RD08104ST-6B">6b</A>
Srinivas KVNS.
Reddy EB.
Das B.
Synlett
2002,
625
<A NAME="RD08104ST-7">7</A>
General Procedure for the Preparation of Pyrano- and Furoquinolines: To a solution of aniline (1 mmol), benzaldehyde (1 mmol) and 3,4-dihydro-2H-Pyran or 2,3-dihydrofuran (0.1 mL) in MeCN or CH2Cl2 (10 mL) Fe3+-K-10 clay or HY-zeolite (PQ Corporation, USA; 100 mg) was added. The mixture was
stirred at r.t. with the first catalyst but refluxed with the second catalyst under
N2 atmosphere. The reaction was monitored by TLC. After completion of the reaction,
the mixture was filtered. The concentrated filtrate was subjected to column chromatography
over silica gel and the column was eluted with hexane-EtOAc (20:1) to afford the pyrano-
or furoquinolines. Both the catalyst, Fe3+-K-10 clay and HY-zeolite were recovered by washing the residue of filtration with
MeCN and CH2Cl2, respectively, activated and recycled.
All the prepared compounds are known. The spectral data of some representative pyrano and furoquinolines are given below.
4b: solid, mp 146-147 °C. 1H NMR (200 MHz, CDCl3): δ = 7.32 (2 H, d, J = 8.0 Hz), 7.18 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.84 (2 H, d, J = 8.0 Hz), 6.64 (1 H, t, J = 8.0 Hz), 6.45 (1 H, d, J = 8.0 Hz), 4.64 (1 H, d, J = 10.0 Hz), 4.36 (1 H, d, J = 2.5 Hz), 4.06 (1 H, m), 3.97 (1 H, d, J = 3.0 Hz), 3.82 (3 H, s), 3.63 (1 H, t, J = 10.0 Hz), 2.02 (1 H, m), 1.82 (1 H, m), 1.64 (1 H, m), 1.44 (1 H, m), 1.28 (1 H,
m). MS-FAB: m/z = 296 [M+ + 1].
5b: solid, mp 154-155 °C. 1H NMR (200 MHz, CDCl3): δ = 7.38 (1 H, d, J = 8.0 Hz), 7.30 (2 H, d, J = 8.0 Hz), 7.00 (1 H, m), 6.82 (2 H, d, J = 8.0 Hz), 6.77 (1 H, t, J = 8.0 Hz), 6.50 (1 H, d, J = 8.0 Hz), 5.26 (1 H, d, J = 3.0 Hz), 4.60 (1 H, d, J = 3.0 Hz), 3.84 (1 H, m), 3.82 (3 H, s), 3.58 (1 H, m), 3.22 (1 H, m), 2.04 (1 H,
m), 1.58-1.30 (4 H, m). MS-FAB: m/z = 296 [M+ + 1].
4c: semi-solid. 1H NMR (200 MHz, CDCl3): δ = 7.32 (4 H, s), 7.16 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.68 (1 H, t, J = 8.0 Hz), 6.48 (1 H, d, J = 8.0 Hz), 4.67 (1 H, d, J = 10.0 Hz), 4.92 (1 H, d, J = 2.5 Hz), 4.05 (1 H, m), 3.95 (1 H, br s), 3.68 (1 H, t, J = 10.0 Hz), 2.01 (1 H, m), 1.80 (1 H, m), 1.63 (1 H, m), 1.44 (1 H, m), 1.22 (1 H,
m). MS-FAB: m/z = 300 [M+ + 1].
5c: viscous. 1H NMR (200 MHz, CDCl3): δ = 7.38 (1 H, d, J = 8.0 Hz), 7.35 (4 H, s), 7.02 (1 H, t, J = 8.0 Hz), 6.74 (1 H, d, J = 8.0 Hz), 6.53 (1 H, d, J = 8.0 Hz), 5.24 (1 H, d, J = 8.0 Hz), 4.65 (1 H, d, J = 2.5 Hz), 3.72 (1 H, m), 3.55
(1 H, m), 3.40 (1 H, m), 2.08 (1 H, m), 1.57-1.32 (4 H, m). MS-FAB: m/z = 300 [M+ + 1].
4d: solid, mp 152-153 °C. 1H NMR (200 MHz, CDCl3): δ = 7.18 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.92 (1 H, d, J = 2.5 Hz), 6.84-6.62 (3 H, m), 6.46 (1 H, d, J = 8.0 Hz), 5.96 (2 H, s), 4.62 (1 H, d, J = 10.0 Hz), 4.36 (1 H, d, J = 3.5 Hz), 4.10 (1 H, m), 3.98 (1 H, br s), 3.70 (1 H, m), 2.02 (1 H, m), 1.85-1.22
(4 H, m). MS-FAB: m/z = 310 [M+ + 1].
5d: solid, mp 160-161 °C. 1H NMR (200 MHz, CDCl3): δ = 7.38 (1 H, d, J = 8.0 Hz), 7.04 (1 H, t, J = 8.0 Hz), 6.92-6.76 (4 H, m), 6.56 (1 H, d, J = 8.0 Hz), 5.96 (2 H, s), 5.24 (1 H, d, J = 6.0 Hz), 4.60 (1 H, d, J = 3.0 Hz), 3.78 (1 H, br s), 3.60-3.38 (2 H, m), 2.05 (1 H, m), 1.60-1.38 (4 H, m).
MS-FAB: m/z = 310 [M+ + 1].
4m: solid, mp 147-148 °C. 1H NMR (200 MHz, CDCl3): δ = 7.35 (4 H, s), 7.14 (1 H, d, J = 8.0 Hz), 7.05 (1 H, t, J = 8.0 Hz), 6.64 (1 H, d, J = 8.0 Hz), 6.42 (1 H, d, J = 8.0 Hz), 4.58 (1 H, d, J = 5.0 Hz), 4.08 (1 H, m), 3.85-3.42 (3 H, m), 2.45 (1 H, m), 2.00 (1 H, m), 1.72
(1 H, m). MS-FAB: m/z = 286 [M+ + 1].
5m: solid, mp 152-153 °C. 1H NMR (200 MHz, CDCl3): δ = 7.40 (1 H, d, J = 8.0 Hz), 7.36 (4 H, s), 7.05 (1 H, t, J = 8.0 Hz), 6.68 (1 H, t, J = 8.0 Hz), 5.25 (1 H, d, J = 8.0 Hz), 4.65 (1 H, d, J = 3.0 Hz), 3.78 (1 H, br s), 3.62-3.40 (2 H, m), 2.18 (1 H, m), 1.62-1.50 (2 H, m).
MS-FAB: m/z = 286 [M+ + 1].
<A NAME="RD08104ST-8">8</A>
Laszlo P.
Mathy A.
Helv. Chim. Acta
1987,
70:
557