Der Pleuraerguss ist ein häufiges pneumologisches und interdisziplinäres Problem. In Verbindung mit bildgebenden Basisuntersuchungen bleibt die Ergussprobepunktion zur Transsudat/Exsudat-Diskriminierung der Grundbaustein der Ergussdiagnostik. Die klassischen Light'schen Kriterien, bestehend aus Eiweiß und LDH (beziehungsweise ihr Serumwert-Ratio) erweisen sich hierbei mit einer Genauigkeit von 95 % am zuverlässigsten. Die Ergänzung um das Cholesterin zum Tripletttest kann in Einzelfällen zur verbesserten Identifikation der Transsudate genutzt werden. In der Regel lösen nur Exsudate als Hinweis auf direkte pleurale Krankheitsbeteiligung weiteren lokalen Klärungsbedarf aus. Die bakterielle Pleuritis, der maligne Erguss und die tuberkulöse Pleuritis sind die wichtigsten Differenzialdiagnosen. Die Thorakozentese ermöglicht mit einer Vielzahl biochemischer, zytologisch-immunologischer, mikrobiologischer und zunehmend auch innovativer zellbiologischer Marker in ca. 70 % (- 90 %) eine Diagnose oder wesentliche Einengung der Diagnose. Bei der bakteriellen Pleuritis ist die Thorakozentese in Bezug auf lokale Interventionen unmittelbar therapierelevant. Sie liefert ferner eine Plattform für weiterführende bildgebungs- oder endoskopie-gestützte bioptische Untersuchungen, in deren Mittelpunkt die internistische Thorakoskopie (Pleuroskopie) steht. Die ungezielte Stanz- oder Nadelbiopsie ist gleichermaßen bei entzündlichen wie malignen Erkrankungen zu 40 - 70 % diagnostisch, thorakoskopisch lässt sich der exsudative Pleuraerguss zu 95 % klären. Maligne Ergüsse können so in Kombination mit den weniger invasiven Untersuchungen zu 97 % spezifisch diagnostiziert werden, tuberkulöse Ergüsse zu nahezu 100 %. Zusätzliche interventionelle Möglichkeiten im Sinne der vollständigen Drainage ± Pleurodese (Talkpoudrage), ggf. auch Lösung von Kammerung und Verklebung ± Fibrinolyse charakterisieren die Thorakoskopie bei Durchführung in Lokalanästhesie auf hohem Sicherheitsniveau auch gegenüber wesentlich aufwendigeren chirurgischen Techniken als Goldstandard im Management der Pleuraergüsse.
Abstract
Pleural effusion is a common pneumologic and interdisciplinary problem. Transudate/exsudate discrimination of the pleural fluid by thoracentesis remains the diagnostic basic algorithm. Regardless of a number of new markers, classical LIGHT's criteria comprising the pleural fluid protein- and LDH-values (or their serum ratio respectively) reveal the highest potency with an overall accuracy of 95 %. Expansion to cholesterol-determination (triplet test) may be helpful to identify transudates in indeterminate cases. The need for further local diagnostic evaluation is then usually restricted to exudates. Bacterial pleurisy, malignant and tuberculous effusion are the principal differential diagnoses. With the use of a variety of conventional biochemical, cytologic, immunologic and microbiologic investigations, thoracentesis will allow- or substantially narrow-diagnosis of exudates in about 70 %, with novel cell biological markers in some conditions up to 90 %. In bacterial pleurisy thoracentesis provides information directly relevant to management in terms of local interventions. It also constitutes a platform for more invasive imaging- or endoscopy-guided investigations with a focus on medical thoracoscopy (pleuroscopy). Blind needle biopsy is diagnostic in a range of 40 - 70 % both in malignancy and inflammatory disease, thoracoscopy may clarify exudative conditions in about 95 %. Thus malignancy may be specifically diagnosed in 97 % of cases, tuberculous effusion in virtually 100 %. The value of thoracoscopy is augmented by interventional options including complete evacuation of the pleural cavity, eventually followed by talc pleurodesis (“poudrage”) in recurrent effusions or adhesiolysis, irrigation and fibrinolysis protocols in certain inflammatory conditions. These combined features as accomplished in local anesthesia on a remarkably high safety level characterise medical thoracoscopy as a gold standard tool for the management of pleural disease even in comparison to more elaborate surgical procedures.
Literatur
1
Antony V B.
Pleural disease.
Semin Respir Crit Care Med.
1995;
4
259-260
2 Light R W. Thoracentesis (diagnostic and therapeutic) and pleural biopsy. In: Light RW. Pleural Diseases, Fourth Edition. Baltimore: Williams and Wilkins 2001
10
Kalomenidis I, Rodriguez M, Barnette R. et al .
Patient with bilateral pleural effusion. Are the findings the same in each fluid?.
Chest.
2003;
124
167-76
12
Burgess L J, Maritz F J, Taljaard F FJ.
Comparative analysis of the biochemical parameters used to distinguish between pleural transudates and exudates.
Chest.
1995;
107
1604-1609
13
Romero S, Candela A, Martin C. et al .
Evaluation of different criteria for the separation of pleural transudates from exudates.
Chest.
1993;
104
399-404
14
Romero-Candeira S, Hernandez L, Romero-Brufao S. et al .
Is it meaningful to use biochemical parameters to discriminate between transudative and exudative pleural effusions?.
Chest.
2002;
122
1524-1529
15
Heffner J E, Brown L K, Barbieri C A.
Diagnostic value of tests that discriminate between exudative and transudative pleural effusions.
Chest.
1997;
111
970-980
16
Heffner J E, Highland K, Brown L K.
A meta-analysis derivation of continuous likelihood ratios for diagnosing pleural fluid exudates.
Am J Respir Crit Care Med.
2003;
167
1591-1599
20
Poe R H, Marin M G, Israel R H. et al .
Utility of pleural fluid analysis in predicting tube thoracostomy/decortication in parapneumonic effusions.
Chest.
1991;
100
963-967
21
Heffner J E, Brown L K, Barbieri C. et al .
Pleural fluid chemical analysis in parapneumonic effusions: a meta-analysis.
Am J Respir Crit Care Med.
1995;
151
1700-1708
23
Colice G L, Curtis A, Deslaurier J. et al .
Medical and surgical treatment of parapneumonic effusion. An ACCP evidence-based guideline.
Chest.
2000;
18
1158-1171
27
Martinez-Garcia M A, Cases Viedma E, Perpina Tordera M. et al .
Repeated thoracentesis: an important risk factor for eosinophilic pleural effusion?.
Respiration.
2003;
70
82-86
30
Maartens G, Bateman E D.
Tuberculous pleural effusion: increased culture yield with bedside inoculation of pleural fluid and poor diagnostic value of adenosine deaminase.
Thorax.
1991;
46
96-99
31
Valdes L, Alvarez D, SanJose E. et al .
Value of adenosine deaminase in the diagnosis of tuberculous pleural effusions in young patients in a region of high prevalence of tuberculosis.
Thorax.
1995;
50
600-603
32
Ungerer J PJ, Oosthuizen H M, Retief J H.
Significance of adenosine deaminase activity and its isoenzymes in tuberculous effusions.
Chest.
1994;
106
33-37
33
Riantawan P, Chaowalit P, Wongsangiem M. et al .
Diagnostic value of pleural adenosine deaminase in tuberculous pleuritis with reference to HIV infection and a Bayesian analysis.
Chest.
1999;
116
97-103
34
Söderblom T, Nyberg P, Teppo A M. et al .
Pleural fluid interferon-γ and tumour necrosis factor-α in tuberculous and rheumatoid pleurisy.
Eur Respir J.
1996;
9
1652-1658
35
Ogawa K, Koga H, Hirakata Y. et al .
Differential diagnosis of tuberculous pleurisy by measurement of cytokine concentrations in pleural fluid.
Tuber Lung Dis.
1997;
78
29-34
37
Lassence A, Lecossier D, Pierre C. et al .
Detection of mycobacterial DNA in pleural fluid from patients with tuberculous pleurisy by means of the PCR: comparison of protocols.
Thorax.
1992;
47
265-269
38
DeWit D, Maertens G, Steyn L.
A comparative study of the PCR and conventional procedures for the diagnosis of tuberculous pleural effusion.
Tuber Lung Dis.
1992;
73
262-267
40
Salian N V, Rish J A, Eisenach K D. et al .
PCR reaction to detect mycobacterium tuberculosis in histologic specimen.
Am J Respir Crit Care Med.
1998;
158
1150-1155
41
Marchetti G, Gori A, Catozzi I.
Evaluation of PCR in detection of MTB from formalin fixed paraffin-embedded tissue: comparison of four amplification assays.
J Clin Microbiol.
1998;
36
1512-1517
42
Gamboa F, Fernandez G, Padilla E. et al .
Comparative evaluation of initial and new versions of the Gen-Probe Amplified Mycobacterium Tuberculosis in respiratory and non-respiratory specimen.
J Clin Microbiol.
1998;
36
684-689
43
Palacios J J, Ferro J, Ruiz-Palma N. et al .
Comparison of the ligase chain reaction with solid and liquid culture media for routine detection of MTB in non-respiratory specimen.
Eur J Microbiol Infect Dis.
1998;
17
767-772
44
Ruiz-Manzano J, Manterola J M, Gamboa F. et al .
Detection of MTB in paraffin-embedded pleural biopsy specimen by commercial ribosomal RNA and DNA amplification kits.
Chest.
2000;
118
648-655
45
Hasaneen N A, Zaki M E, Shalaby H M. et al .
Polymerase chain reaction of pleural biopsy is a rapid and sensitive method for the diagnosis of tuberculous pleural effusion.
Chest.
2003;
124
2105-2111
46
Lima D M, Colares K B, daFonseca B AL.
Combined use of the polymerase chain reaction and detection of adenosine deaminase activity on pleural fluid improves the rate of diagnosis of pleural tuberculosis.
Chest.
2003;
124
909-914
49
Pettersen T, Klockars M, Hellström P E.
Chemical and immunological features of pleural effusions: comparison between rheumatoid arthritis and other diseases.
Thorax.
1982;
37
354-361
53
Loddenkemper R, Grosser H, Gabler A. et al .
Prospective evaluation of biopsy methods in the diagnosis of malignant pleural effusions: intrapatient comparison between pleural fluid cytology, fine needle biopsy and thoracoscopy.
Am Rev Respir Dis.
1983;
127: Suppl. 4
114A
55
Guzman J, Bross K J, Costabel U.
Malignant pleural effusions due to small cell carcinoma of the lung: An immunocytochemical cell surface analysis of lymphocytes and tumour cells.
Acta Cytol.
1990;
2
497-501
56
Antony V B, Loddenkemper R, Astoul P. et al .
ATS/ERS statement: Management of malignant pleural effusions.
Am J Respir Crit Care Med.
2000;
162
1987-1901
58
Yu C J, Shew J Y, Liaw Y S. et al .
Application of a mucin quantitative competitive reverse transcription polymerase chain in assisting the diagnosis of malignant pleural effusion.
Am J Respir Crit Care Med.
2001;
164
1312-1318
59
Han A C, Filstein M R, Hunt J V. et al .
N-Cadherin distinguishes pleural mesotheliomas from lung adenocarcinomas.
Cancer Cytopathol.
1999;
87
83-86
60
Fischer M, Günter S, Müller K M.
Deutsches Mesotheliomregister Bochum. Faserjahre, Asbestbelastung der Lungen, Asbestosen.
Pneumologie.
2000;
54
155-159
61
Romero S, Fernandez C, Arriero J M. et al .
CEA, CA15-3 and CYFRA-21 in serum and pleural fluid of patients with pleural effusions.
Eur Respir J.
1996;
9
17-23
63
Mezger J, Lamerz R, Bresgen M. et al .
Carcinoembryonales Antigen im Serum und Pleuraerguss zur Unterscheidung von Bronchialkarzinom und Mesotheliom.
DMW.
1991;
116
207-211
64
Heffner J E, Heffner J N, Brown L K.
Multilevel and continuous pleural fluid pH likelihood ratios for evaluating malignant pleural effusions.
Chest.
2003;
123
1887-1894
70
Porcel J M, Vives M, Esquerda A.
Tumor necrosis factor-α in pleural fluid. A marker of complicated parapneumonic effusions.
Chest.
2004;
125
160-164
71
Mohammed K A, Nasreen N, Ward M J. et al .
Helper T-cell type 1 and 2 cytokines regulate CC-chemokine expression in mouse pleural mesothelial cells.
Am Respir Crit Care Med.
1999;
159
1653-1659
72
Rodriguez-Panadero F, Segado A, Martin Juan J. et al .
Failure of talc pleurodesis is associated with increased pleural fibrinolysis.
Am J Respir Crit Care Med.
1995;
151
785-790
73
Chung C L, Chen Y C, Chang S C.
Effect of repeated thoracentesis on fluid characteristics, cytokines and fibrinolytic activity in malignant pleural effusion.
Chest.
2003;
123
1188-1195
74
Thicket D R, Armstrong L, Millar A B.
Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions.
Thorax.
1999;
54
707-710
75
Kraft A, Weindel K, Ochs A. et al .
Vascular endothelial growth factor in the sera and effusions of patients with malignant and nonmalignant disease.
Cancer.
1999;
85
178-187
77
Takahashi K, Saito S, Kamamura Y. et al .
Prognostic value of CD4+ lymphocytes in pleural cavity of patients with non-small cell lung cancer.
Thorax.
2001;
56
639-642
80
Radja G O, Argaval V, Vizoli L D. et al .
Comparison of the Raja and the Abrams pleural biopsy needles in patients with pleural effusion.
Am Rev Respir Dis.
1993;
147
1291-1294
81 Chretien J, Daniel C J. Needle pleural biopsy. In: Chretien J, Bignon J, Hirsch A (eds.). The pleura in health and disease. New York: Marcel Dekker 1985: 631-642
83
Kirsch C M, Kroe D M, Azzi R L. et al .
The optimal number of pleural biopsy specimens for a diagnosis of tuberculous pleurisy.
Chest.
1997;
112
702-706
90
Loddenkemper R, Fabel H, Konietzko N. et al .
Diagnostisches Vorgehen beim Pleuraerguss. Deutsche Gesellschaft für Pneumologie. Empfehlungen zur Diagnostik und Therapie von Lungenkrankheiten.
Pneumologie.
1994;
48
278-280
94
Boutin C, Rey F, Viallat J R.
Prevention of malignant seeding after invasive diagnostic procedures in patients with pleural mesothelioma: A randomized trial of local radiotherapy.
Chest.
1995;
108
754-758
95
Loddenkemper R, Grosser H, Mai J. et al .
Diagnostik des tuberkulösen Pleuraergusses: prospektiver Vergleich laborchemischer, bakteriologischer, zytologischer und histologischer Untersuchungsergebnisse.
Pneumologie.
1983;
37
1153-1156
98
Canto-Armengod A, Rivas J, Saumench J. et al .
Points to consider when choosing a biopsy method in cases of pleurisy of unknown origin.
Chest.
1983;
84
176-179
100
Adams R, Gray W, Davies R JO. et al .
Percutaneous image-guided cutting needle biopsy of the pleura in the diagnosis of malignant mesothelioma.
Chest.
2001;
120
1798-1802
101
Prakash U BS, Reiman H M.
Comparison of needle biopsy with cytologic analysis for the evaluation of pleural effusion: analysis of 414 cases.
Chest.
1983;
84
176
102
Boutin C, Frey F, Gouvernet J. et al .
Thoracoscopy in pleural malignant mesothelioma. A prospective study of 188 consecutive patients. Part 1: Diagnosis, Part 2: Prognosis and Staging.
Cancer.
1993;
72
389-404