Minim Invasive Neurosurg 2004; 47(5): 284-289
DOI: 10.1055/s-2004-830094
Original Article
© Georg Thieme Verlag Stuttgart · New York

Functional Neurosurgery in the MRI Environment

A.  A. F.  De Salles1 , L.  Frighetto1 , E.  Behnke1 , S.  Sinha2 , L.  Tseng1 , R.  Torres1 , M.  Lee1 , C.  Cabatan-Awang1 , R.  Frysinger3
  • 1Division of Neurosurgery, School of Medicine, University of California, Los Angeles, CA, USA
  • 2Division of Radiology, School of Medicine, University of California, Los Angeles, CA, USA
  • 3Division of Neurobiology, School of Medicine, University of California, Los Angeles, CA, USA
Further Information

Publication History

Publication Date:
31 March 2005 (online)

Abstract

Objective: The purpose of this study was to evaluate the feasibility of microelectrode recording, electrical stimulation, and electrode position checking during functional neurosurgical procedures (DBS, lesion) in the interventional magnetic resonance imaging (iMRI) environment.

Methods: Seventy-six surgical procedures for DBS implant or radiofrequency lesion were performed in an open 0.2 T MRI operating room. DBS implants were performed in 54 patients (72 surgical procedures) and unilateral radiofrequency lesions in three for a total of 76 surgeries in 57 patients. Electrophysiological studies including macrostimulation and microelectrode recordings for localization were obtained in the 0.5 to 10 mT fringes of the magnetic field in 51 surgeries. MRI confirmation of the electrode position during the procedure was performed after electrophysiological localization.

Results: The magnetic field associated with the MRI scanner did not contribute significant noise to microelectrode recordings. Anatomical confirmation of electrode position was possible within the MRI artifact from the DBS hardware. Symptomatic hemorrhage was detected in two (2.6 %) patients during the operation. Image quality of the 0.2 T MRI scan was sub-optimal for anatomical localization. However, image fusion with pre-operative scans permitted excellent visualization of the DBS electrode tip in relation to the higher quality 1.5 T MRI anatomical scans.

Conclusion: This study shows that conventional stereotactic localization, microelectrode recordings, electrical stimulation, implant of DBS hardware, and radiofrequency lesion placement are possible in the open 0.2 T iMRI environment. The convenience of having an imaging modality that can visualize the brain during the operation is ideal for stereotactic procedures.

References

  • 1 Spiegel E. et al . Stereotaxic apparatus for operations on the human brain.  Science. 1947;  106 349-350
  • 2 Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. Stuttgart: Thieme 1977
  • 3 Talairach J, Tournoux P. Co-Planar Stereotactic Atlas of the Human Brain. Stuttgart: Thieme 1988
  • 4 Lunsford L D, Rosenbaum A E, Perry J. Stereotactic surgery using the “therapeutic” CT scanner.  Surg Neurol. 1982;  18 116-122
  • 5 Kondziolka D. et al . Outcomes after stereotactically guided pallidotomy for advanced Parkinson's disease.  J Neurosurg. 1999;  90 197-202
  • 6 De Salles A A, Hariz M. MRI Guided Pallidotomy. In: Neurosurgical Operative Atlas. Rengachary SS, Wilkins, RH editors. Philadelphia: Williams & Wilkins 1998: 141-148
  • 7 Alexander 3rd E. et al . Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy.  J Neurosurg. 1995;  83 271-276
  • 8 Lozano A. et al . Methods for microelectrode-guided posteroventral pallidotomy.  J Neurosurg. 1996;  84 194-202
  • 9 Johansson F. et al . Usefulness of pallidotomy in advanced Parkinson's disease.  J Neurol Neurosurg Psychiatry. 1997;  62 125-132
  • 10 Starr P A. et al . Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus.  Neurosurgery. 1999;  44 303-313; discussion: 313 - 314
  • 11 Apuzzo M. et al .Applications of Image-Directed Stereotactic Surgery in the Management of Intracranial Neoplasms. In: Heilbrun MP (eds.). Stereotactic Neurosurgery, Concepts in Neurosurgery. Philadelphia: Williams & Wilkins 1988
  • 12 De Salles A A, Behnke E J. et al .Instrumentation for Interventional MRI of the Brain. In: De Salles A, Lufkin R (eds.). Minimally Invasive Therapy of the Brain. New York: Thieme 1997: 108-115
  • 13 Kirschman D L. et al . Pallidotomy microelectrode targeting: neurophysiology-based target refinement.  Neurosurgery. 2000;  46 613-622; discussion 622 - 624
  • 14 Hariz M I, Fodstad H. Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature.  Stereotact Funct Neurosurg. 1999;  72 157-169
  • 15 Benabid A L. et al .Subthalamic Nucleus Deep Brain Stimulation. In: Lozano A (eds.). Movement Disorder Surgery. Basel: Karger 2000
  • 16 Iacono R P. et al . Stimulation of the globus pallidus in Parkinson's disease.  Br J Neurosurg. 1995;  9 505-510
  • 17 Schuurman P R. et al . A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor.  N Engl J Med. 2000;  342 461-468
  • 18 Limousin P. et al . Multicentre European study of thalamic stimulation in parkinsonian and essential tremor.  J Neurol Neurosurg Psychiatry. 1999;  66 289-296
  • 19 Hariz M I, Bergenheim A T. Clinical evaluation of computed tomography-guided versus ventriculography-guided thalamotomy for movement disorders.  Acta Neurochir Suppl (Wien). 1993;  58 53-55
  • 20 Mobin F. et al . Correlation between MRI-based stereotactic thalamic deep brain stimulation electrode placement, macroelectrode stimulation and clinical response to tremor control.  Stereotact Funct Neurosurg. 1999;  72 225-232
  • 21 De Salles A A. et al . Early postoperative appearance of radiofrequency lesions on magnetic resonance imaging.  Neurosurgery. 1995;  36 932-936; discussion: 936 - 937
  • 22 Maciunas R J. et al . An independent application accuracy evaluation of stereotactic frame systems.  Stereotact Funct Neurosurg. 1992;  58 103-107
  • 23 Rubino G J. et al . Magnetic resonance imaging-guided neurosurgery in the magnetic fringe fields: the next step in neuronavigation.  Neurosurgery. 2000;  46 643-653; discussion: 653 - 654
  • 24 Anzai Y. et al . Radiofrequency ablation of brain tumors using MR guidance.  Minimally Invasive Therapy and Allied Technology. 1996;  5 232-242
  • 25 Anzai Y. et al . Preliminary experience with MR-guided thermal ablation of brain tumors.  AJNR Am J Neuroradiol. 1995;  16 39-48; discussion 49 - 52
  • 26 Farahani K. et al . Hyperacute thermal lesions: MR imaging evaluation of development in the brain.  Radiology. 1995;  196 517-520
  • 27 Huang A. et al . Interventional MRI for neurosurgery.  Perspectives in Neurological Surgery. 1995;  6 44-59
  • 28 Bernays R L. et al . Near-real-time guidance using intraoperative magnetic resonance imaging for radical evacuation of hypertensive hematomas in the basal ganglia.  Neurosurgery. 2000;  47 1081- 1089; discussion 1089 - 1090
  • 29 Black P M. et al . Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications.  Neurosurgery. 1997;  41 831-842, discussion 842 - 845
  • 30 Kettenbach J. et al . Computer-based imaging and interventional MRI: applications for neurosurgery.  Comput Med Imaging Graph. 1999;  23 245-258
  • 31 Schulder M, Liang D, Carmel P W. Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager.  J Neurosurg. 2001;  94 936-945
  • 32 Seifert V. et al . Open MRI-guided neurosurgery.  Acta Neurochir (Wien). 1999;  141 455-464
  • 33 Tronnier V M. et al . Intraoperative diagnostic and interventional magnetic resonance imaging in neurosurgery.  Neurosurgery. 1997;  40 891-900; discussion 900 - 902
  • 34 Wirtz C R. et al . Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery.  Neurosurgery. 2000;  46 1112-1120; discussion 1120 - 1122
  • 35 Zimmermann M. et al . Open MRI-guided microsurgery of intracranial tumours. Preliminary experience using a vertical open MRI-scanner.  Acta Neurochir (Wien). 2000;  142 177-186
  • 36 Bernstein M. et al . Brain tumor surgery with the Toronto open magnetic resonance imaging system: preliminary results for 36 patients and analysis of advantages, disadvantages, and future prospects.  Neurosurgery. 2000;  46 900-907; discussion 907 - 909
  • 37 Hall W A. et al . Safety, efficacy, and functionality of high-field strength interventional magnetic resonance imaging for neurosurgery.  Neurosurgery. 2000;  46 632-641, discussion 641 - 642
  • 38 Liu H. et al . MR-guided and MR-monitored neurosurgical procedures at 1.5 T.  J Comput Assist Tomogr. 2000;  24 909-918
  • 39 Lewin J S, Metzger A, Selman W R. Intraoperative magnetic resonance image-guidance in neurosurgery.  J Magn Reson Imaging. 2000;  12 512-524
  • 40 Matula C. et al . Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow.  Comput Aided Surg. 1998;  3 174-182
  • 41 Hariz M I, de Salles A A. The side-effects and complications of posteroventral pallidotomy.  Acta Neurochir Suppl (Wien). 1997;  68 42-48
  • 42 Steinmeier R. et al . Intraoperative magnetic resonance imaging with the magnetom open scanner: concepts, neurosurgical indications, and procedures: a preliminary report.  Neurosurgery. 1998;  43 739-747; discussion 747 - 748
  • 43 Finelli D A. et al . MR imaging-related heating of deep brain stimulation electrodes: in vitro study.  AJNR Am J Neuroradiol. 2002;  23 1795-1802
  • 44 Rezai A R. et al . Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla.  J Magn Reson Imaging. 2002;  15 241-250
  • 45 Ohye C. Thalamotomy for Parkinson's Disease and Other Types of Tremor: Historical Background and Technique. In: Gildenberg P, Tasker R (eds.). Textbook of Stereotactic and Functional Neurosurgery. New York: McGraw Hill 1998
  • 46 Slavin K V, Burchiel K J. Thalamotomy Without Microelectrode Recording. In: Lozano A (eds.). Movement Disorder Surgery. Basel: Karger AG 2000
  • 47 Favre J, Taha J M, Burchiel K J. An analysis of the respective risks of hematoma formation in 361 consecutive morphological and functional stereotactic procedures.  Neurosurgery. 2002;  50 48-56; discussion 56 - 57
  • 48 Kumar R. et aI . Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson's disease.  Neurology. 2000;  55 (12 Suppl 6) 34-39
  • 49 Gering D T. et aI . An integrated visualization system for surgical planning and guidance using image fusion and an open MR.  J Magn Reson Imaging. 2001;  13 967-975

Antonio A. F. De SallesM. D., Ph. D. 

200 UCLA Medical Plaza

Suite 504

Los Angeles

CA 90095-7182

USA

Phone: +1-310-794-1221

Fax: +1-310-794-1848

Email: adesalles@mednetucla.edu