Int J Sports Med 2005; 26(9): 747-755
DOI: 10.1055/s-2004-830449
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effects of High-Intensity Isokinetic Exercise on Salivary Cortisol in Athletes with Different Training Schedules: Relationships to Serum Cortisol and Lactate

P. Paccotti1 , M. Minetto1 , M. Terzolo1 , M. Ventura1 , G. P. Ganzit2 , P. Borrione1 , A. Termine1 , A. Angeli1
  • 1Clinica Medica Generale, Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Italy
  • 2Istituto di Medicina dello Sport di Torino, Torino, Italy
Further Information

Publication History

Accepted after revision: September 30, 2004

Publication Date:
02 February 2005 (online)

Abstract

Physical exercise is associated with increases of serum and salivary levels of cortisol. The concomitant increase in serum lactate has been implicated as one of the mechanisms responsible for adrenocortical activation. We evaluated the responses of serum lactate and serum and salivary cortisol to an acute bout of high-intensity isokinetic exercise in eleven non-competitive and twenty competitive athletes (NCA and CA, respectively). The latter group was composed of endurance- and power-trained athletes (EA and PA, respectively). Aims of the study were to determine interindividual differences in the lactate and cortisol responses as a function of type and intensity of training and to search for relationships both between lactate and cortisol production and between serum and salivary cortisol levels.

The isokinetic exercise test elicited significant cortisol and lactate responses. No difference was evident in the lactate responses between NCA and CA, while the PA showed a higher response during and after the exercise in comparison to EA (peak levels immediately after the exercise: PA 15.0 ± 1.5 mmol/l vs. EA 11.1 ± 2.6 mmol/l, p < 0.01). Serum cortisol was higher in the CA in comparison to the NCA group at 30 and 120 minutes after the termination of the exercise, while no differential response was evident between EA and PA groups. Salivary cortisol response was higher in the CA group in comparison to NCA immediately after the exercise and at 90 and 120 minutes after the termination and was higher in PA in comparison to EA at 60, 90, and 120 minutes after the termination (peak levels at 60 minutes: PA 51.2 ± 18.5 nmol/l vs. EA 27.5 ± 20.8 nmol/l, p < 0.05). No significant correlations were found between serum or salivary cortisol and lactate levels. The relationship between serum and salivary cortisol was markedly non-linear, the slope of the serum-saliva regression line being lower for serum cortisol concentrations over 500 nmol/l than for concentrations below that value (0.019 and 0.037, respectively, p < 0.01).

We have confirmed in this particular setting the existence of an important adrenocortical response that can be reliably and non invasively assessed by a serial saliva sampling and have supported the concept that cortisol and lactate responses to a high-intensity isokinetic exercise are independent. The interindividual differences in cortisol changes are likely to be related to the training status and mode as well as to the correspondence between the evaluation protocol and the discipline individually performed.

References

  • 1 Aardal E, Holm A C. Cortisol in saliva-reference ranges and relation to cortisol in serum.  Eur J Clin Chem Clin Biochem. 1995;  33 927-932
  • 2 Ben-Aryeh H, Roll N, Lahav M, Dlin R, Hanne-Paparo N, Szargel R, Shein-Orr C, Laufer D. Effect of exercise on salivary composition and cortisol in serum and saliva in man.  J Dent Res. 1989;  68 1495-1497
  • 3 Borges O, Essen-Gustavsson B. Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development.  Acta Physiol Scand. 1989;  136 29-36
  • 4 Buono M J, Yeager J E, Hodgdon J A. Plasma adrenocorticotropin and cortisol responses to brief high-intensity exercise in humans.  J Appl Physiol. 1986;  61 1337-1339
  • 5 Convertino V A, Keil L C, Bernauer E M, Greenleaf J E. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man.  J Appl Physiol. 1981;  50 123-128
  • 6 del Corral P, Mahon A D, Duncan G E, Howe C A, Craig B W. The effect of exercise on serum and salivary cortisol in male children.  Med Sci Sports Exerc. 1994;  26 1297-1301
  • 7 Essen B, Haggmark T. Lactate concentration in type I and II muscle fibres during muscular contraction in man.  Acta Physiol Scand. 1975;  95 344-346
  • 8 Essen B, Jansson E, Henriksson J, Taylor A W, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle.  Acta Physiol Scand. 1975;  95 153-165
  • 9 Farrell P A, Garthwaite T L, Gustafson A B. Plasma adrenocorticotropin and cortisol responses to submaximal and exhaustive exercise.  J Appl Physiol. 1983;  55 1441-1444
  • 10 Few J D. Effect of exercise on the secretion and metabolism of cortisol in man.  J Endocrinol. 1974;  62 341-353
  • 11 Flamm S D, Taki J, Moore R, Lewis S F, Keech F, Maltais F, Ahmad M, Callahan R, Dragotakes S, Alpert N. Redistribution of regional and organ blood volume and effect on cardiac function in relation to upright exercise intensity in healthy human subjects.  Circulation. 1990;  81 1550-1559
  • 12 Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise.  J Appl Physiol. 1999;  87 348-355
  • 13 Hackney A C, Premo M C, McMurray R G. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men.  J Sports Sci. 1995;  13 305-311
  • 14 Hakkinen K, Pakarinen A. Acute hormonal responses to two different fatiguing heavy-resistance protocols in male athletes.  J Appl Physiol. 1993;  74 882-887
  • 15 Hashimoto K, Suemaru S, Takao T, Sugawara M, Makino S, Ota Z. Corticotropin-releasing hormone and pituitary-adrenocortical responses in chronically stressed rats.  Regul Pept. 1988;  23 117-126
  • 16 Jacks D E, Sowash J, Anning J, McGloughlin T, Andres F. Effect of exercise at three exercise intensities on salivary cortisol.  J Strength Cond Res. 2002;  16 286-289
  • 17 Jurimae T, Karelson K, Smirnova T, Viru A. The effect of a single-circuit weight-training session on the blood biochemistry of untrained university students.  Eur J Appl Physiol Occup Physiol. 1990;  61 344-348
  • 18 Kanaley J A, Weltman J Y, Pieper K S, Weltman A, Hartman M L. Cortisol and growth hormone responses to exercise at different times of day.  J Clin Endocrinol Metab. 2001;  86 2881-2889
  • 19 Kant G J, Eggleston T, Landman-Roberts L, Kenion C C, Driver G C, Meyerhoff J L. Habituation to repeated stress is stressor specific.  Pharmacol Biochem Behav. 1985;  22 631-634
  • 20 Kirschbaum C, Hellhammer D H. Salivary cortisol in psychobiological research: an overview.  Neuropsychobiology. 1989;  22 150-169
  • 21 Kraemer W J, Dziados J E, Marchitelli L J, Gordon S E, Harman E A, Mello R, Fleck S J, Frykman P N, Triplett N T. Effects of different heavy-resistance exercise protocols on plasma beta-endorphin concentrations.  J Appl Physiol. 1993;  74 450-459
  • 22 Kraemer W J, Patton J F, Gordon S E, Harman E A, Deschenes M R, Reynolds K, Newton R U, Triplett N T, Dziados J E. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations.  J Appl Physiol. 1995;  78 976-989
  • 23 Lac G, Marquet P, Chassain A P, Galen F X. Dexamethasone in resting and exercising men. II. Effects on adrenocortical hormones.  J Appl Physiol. 1999;  87 183-188
  • 24 Laudat M H, Cerdas S, Fournier C, Guiban D, Guilhaume B, Luton J P. Salivary cortisol measurement: a practical approach to assess pituitary-adrenal function.  J Clin Endocrinol Metab. 1988;  66 343-348
  • 25 Luger A, Deuster P A, Kyle S B, Gallucci W T, Montgomery L C, Gold P W, Loriaux D L, Chrousos G P. Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training.  N Engl J Med. 1987;  21 1309-1315
  • 26 Obminski Z, Stupnicki R. Comparison of the testosterone-to-cortisol ratio values obtained from hormonal assays in saliva and serum.  J Sports Med Phys Fitness. 1997;  37 50-55
  • 27 O'Connor P J, Corrigan D L. Influence of short-term cycling on salivary cortisol levels.  Med Sci Sports Exerc. 1987;  19 224-228
  • 28 Oyono-Enguelle S, Gartner M, Marbach J, Heitz A, Ott C, Freund H. Comparison of arterial and venous blood lactate kinetics after short exercise.  Int J Sports Med. 1989;  10 16-24
  • 29 Peters J R, Walker R F, Riad-Fahmy D, Hall R. Salivary cortisol assays for assessing pituitary-adrenal reserve.  Clin Endocrinol (Oxf). 1982;  17 583-592
  • 30 Petrides J S, Deuster P A, Mueller G P. Lactic acid does not directly activate hypothalamic-pituitary corticotroph function.  Proc Soc Exp Biol Med. 1999;  220 100-105
  • 31 Port K. Serum and saliva cortisol responses and blood lactate accumulation during incremental exercise testing.  Int J Sports Med. 1991;  12 490-494
  • 32 Raff H, Raff J L, Findling J W. Late-night salivary cortisol as a screening test for Cushing's syndrome.  J Clin Endocrinol Metab. 1998;  83 2681-2686
  • 33 Rowbottom D G, Keast D, Garcia-Webb P, Morton A R. Serum free cortisol responses to a standard exercise test among elite triathletes.  Aust J Sci Med Sport. 1995;  27 103-107
  • 34 Stallknecht B, Vissing J, Galbo H. Lactate production and clearance in exercise. Effects of training. A mini-review.  Scand J Med Sci Sports. 1998;  8 127-131
  • 35 Stupnicki R, Obminski Z. Glucocorticoid response to exercise as measured by serum and salivary cortisol.  Eur J Appl Physiol Occup Physiol. 1992;  65 546-549
  • 36 Stupnicki R, Obminski Z, Klusiewicz A, Viru A. Pre-exercise serum cortisol concentration and responses to laboratory exercise.  Eur J Appl Physiol Occup Physiol. 1995;  71 439-443
  • 37 Thuma J R, Gilders R, Verdun M, Loucks A B. Circadian rhythm of cortisol confounds cortisol responses to exercise: implications for future research.  J Appl Physiol. 1995;  78 1657-1664
  • 38 Tremblay M S, Copeland J L, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in males.  J Appl Physiol. 2004;  96 531-539
  • 39 Vining R F, McGinley R A, Maksvytis J J, Ho K Y. Salivary cortisol: a better measure of adrenal cortical function than serum cortisol.  Ann Clin Biochem. 1983;  20 329-335
  • 40 Worthman C M, Stallings J F, Hofman L F. Sensitive salivary estradiol assay for monitoring ovarian function.  Clin Chem. 1990;  36 1769-1773

P. Paccotti

Clinica Medica Generale

ASO San Luigi, Regione Gonzole 10

10043 Orbassano (TO)

Italy

Phone: + 390119026514

Fax: + 39 01 19 03 86 55

Email: piero.paccotti@unito.it