Subscribe to RSS
DOI: 10.1055/s-2004-830861
Synthesis of 2-Substituted Indoles via Pd/C-Catalyzed Reaction in Water [1]
Publication History
Publication Date:
06 August 2004 (online)
Abstract
A general and one-pot synthesis of 2-alkyl/aryl substituted indoles via a tandem Pd/C mediated coupling/5-endo-dig cyclization of terminal alkynes (including acetylenic carbinols) with o-iodoanilides in water is reported. The reaction is carried out using PPh3 and CuI as co-catalysts and 2-aminoethanol as a base. The reaction appears to tolerate a variety of functional groups present in the alkynes and does not require the use of any organic co-solvent.
Key words
indoles - Sonogashira coupling/5-endo-dig cyclization - palladium catalyst - water
DRL publication No 427.
- For a review, see:
-
2a
Sundberg RJ. Pyrroles and their Benzo Derivatives: Synthesis and Applications, In Comprehensive Heterocyclic Chemistry Vol. 4:Katritzky AR.Rees CW. Pergamon; Oxford: 1984. p.313-376 -
2b
Lounasmaa M.Tolvanen A. Nat. Prod. Rep. 2000, 17: 175 - 3
Young WB.Kolesnikov A.Rai R.Sprengeler PA.Leahy EM.Shrader WD.Sangalang J.Burgess-Henry J.Spencer J.Elrod K.Cregar L. Bioorg. Med. Chem. Lett. 2001, 11: 2253 - 4
Mackman RL.Hui HC.Breitenbucher JG.Katz BA.Luong C.Martelli A.McGee D.Radika K.Sendzik M.Spencer JR.Sprengeler PA.Tario J.Verner E.Wang J. Bioorg. Med. Chem. Lett. 2002, 12: 2019 - 5
Chai W.Breitenbucher JG.Kwok A.Li X.Wong V.Carruthers NI.Lovenberg TW.Mazur C.Wilson SJ.Axe FU.Jones TK. Bioorg. Med. Chem. Lett. 2003, 13: 1767 - 6 For a recent review on indole ring synthesis, see:
Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000, 1045 - For Cu-mediated process, see:
-
7a
Cacchi S.Fabrizi G.Parisi LM. Org. Lett. 2003, 5: 3843 -
7b
Ezquerra J.Pedregal C.Lamas C.Barluenga J.Perez M.Garcia-Martin MA.Gonzalez JM. J. Org. Chem. 1996, 61: 5804 -
7c
Hiroya K.Itoh S.Ozawa M.Kanamori Y.Sakamoto T. Tetrahedron Lett. 2002, 43: 1277 -
8a
Hong KB.Lee CW.Yum EK. Tetrahedron Lett. 2004, 45: 693 -
8b
Dai W.-M.Sun L.-P.Guo D.-S. Tetrahedron Lett. 2002, 43: 7699 -
8c
Dai W.-M.Guo D.-S.Sun L.-P. Tetrahedron Lett. 2001, 42: 5275 -
8d
Zhang HC.Ye H.White KB.Maryanoff BE. Tetrahedron Lett. 2001, 42: 4751 -
8e
Zhang HC.Ye H.Moretto AF.Brumfield KK.Maryanoff BE. Org. Lett. 2000, 2: 89 -
8f
Fagnola MC.Candiani I.Visentin G.Cabri W.Zarini F.Mongelli N.Bedeschi A. Tetrahedron Lett. 1997, 38: 2307 -
8g
Arcadi A.Cacchi S.Marinelli F. Tetrahedron Lett. 1992, 33: 3915 -
8h
Sakamoto T.Kondo Y.Yamanaka H. Heterocycles 1988, 27: 2225 -
8i
Kabalka GW.Wang L.Pagni RM. Tetrahedron 2001, 57: 8017 -
9a
Roesch KR.Larock RC. Org. Lett. 1999, 1: 1551 -
9b
Larock RC.Yum EK.Refvik MD. J. Org. Chem. 1998, 63: 7652 -
9c
Zhang H.-C.Brumfield KK.Maryanoff BE. Tetrahedron Lett. 1997, 38: 2439 -
9d
Chen CY.Lieberman DR.Larsen RD.Reamer RA.Verhoven TR.Reider PJ.Cottrell IF.Houghton PG. Tetrahedron Lett. 1994, 35: 6981 -
9e
Jeschke T.Wensbo D.Annby U.Gronowitz S.Cohen LA. Tetrahedron Lett. 1993, 34: 6471 -
9f
Larock RC.Yum EK. J. Am. Chem. Soc. 1991, 113: 6689 - For Pd-mediated coupling reactions of haloindoles; see:
-
10a
Liu Y.Gribble GW. Tetrahedron Lett. 2000, 41: 8717 -
10b
Zhang H.-C.Ye H.White KB.Maryanoff BE. Tetrahedron Lett. 2001, 42: 4751 -
11a
Sakamoto T.Kondo Y.Iwashita S.Nagano T.Yamanaka H. Chem. Pharm. Bull. 1988, 36: 1305 -
11b
Amjad M.Knight DW. Tetrahedron Lett. 2004, 45: 539 -
11c
Mackman RL.Katz BA.Breitenbucher JG.Hui HC.Verner E.Luong C.Liu L.Sprengeler PA. J. Med. Chem. 2001, 44: 3856 -
11d
Kundu NG.Mahanty JS.Das P.Das B. Tetrahedron Lett. 1993, 34: 1625 -
11e For palladium mediated cyclization of 2-alkynylanilines see:
Takeda A.Kamijo S.Yamamoto Y. J. Am. Chem. Soc. 2000, 122: 5662 -
12a
Leadbeater NE.Marco M.Tominack BJ. Org. Lett. 2003, 5: 3919 -
12b
Aqueous-Phase Organometallic Catalysis, Concepts and Applications
Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 1998. -
13a
Lopez-Deber MP.Castedo L.Granja JR. Org. Lett. 2001, 3: 2823 -
13b
Pierre Genet J.Savignac M. J. Organomet. Chem. 1999, 576: 305 -
13c
Mori A.Ahmed MSM.Sekiguchi A.Masui K.Koike T. Chem. Lett. 2002, 756 -
13d
Bumagin NA.Sukhomlinova LI.Luzikova EV.Tolstaya TP.Beletskaya IP. Tetrahedron Lett. 1996, 37: 897 -
13e
Uozumi Y.Kobayashi Y. Heterocycles 2003, 59: 71 -
13f
Amatore C.Blart E.Genet JP.Jutand A.Lemaire-Audoire S.Savignac M. J. Org. Chem. 1995, 60: 6829 -
13g
Casalnuovo AL.Calabrese JC. J. Am. Chem. Soc. 1990, 112: 4324 -
13h
Dibowski H.Schmidtchen FP. Tetrahedron Lett. 1998, 39: 525 - 14
De la Rosa MA.Velarde E.Guzman A. Synth. Commun. 1990, 20: 2059 -
15a
Novak Z.Szabo A.Repasi J.Kotschy A. J. Org. Chem. 2003, 68: 3327 -
15b For the use of Pd(OH)2/C as catalyst, see:
Mori Y.Seki M. J. Org. Chem. 2003, 68: 1571 -
15c
Heidenreich RG.Köhler K.Krauter JGE.Pietsch J. Synlett 2002, 1118 -
15d
Felpin F.-X.Vo-Thanh G.Villiéras J.Lebreton J. Tetrahedron: Asymmetry 2001, 12: 1121 -
15e
Bates RW.Boonsombat J. J. Chem. Soc., Perkin Trans. 1 2001, 654 -
15f
Bleicher LS.Cosford NDP.Herbaut A.McCallum JS.McDonald IA. J. Org. Chem. 1998, 63: 1109 -
15g
Bleicher L.Cosford NDP. Synlett 1995, 1115 -
15h
Potts KT.Horwitz CP.Fessak A.Keshavarz KM.Nash KE.Toscano PJ. J. Am. Chem. Soc. 1993, 115: 10444 -
16a
Pal M.Parasuraman K.Subramanian V.Dakarapu R.Yeleswarapu KR. Tetrahedron Lett. 2004, 45: 2305 -
16b
Pal M.Parasuraman K.Yeleswarapu KR. Org. Lett. 2003, 5: 349 -
16c
Pal M.Subramanian V.Parasuraman K.Yeleswarapu KR. Tetrahedron 2003, 59: 9563 -
16d
Pal M.Parasuraman K.Gupta S.Yeleswarapu KR. Synlett 2002, 1976 -
16e
Pal M.Kundu NG. J. Chem. Soc., Perkin Trans. 1 1996, 449 -
17a
Pal M.Subramanian V.Yeleswarapu KR. Tetrahedron Lett. 2003, 44: 8221 -
17b
Kundu NG.Pal M. J. Chem. Soc., Chem. Commun. 1993, 86 -
17c
Kundu NG.Pal M.Mahanty JS.Dasgupta SK. J. Chem. Soc., Chem. Commun. 1992, 41 -
18a
Radl S.Hezky P.Urbankova J.Vachal P.Krejci I. Collect. Czech. Chem. Commun. 2000, 65: 280 -
18b For biological activities of 5-methylindoles, see:
Dai J.Sun B.Zhang A.Lin K.Wang L. Bull. Environ. Contam. Toxicol. 1998, 61: 591 -
18c
Kon-Ya K.Shimidzu N.Miki W.Endo M. Biosci. Biotechnol. Biochem. 1994, 58: 2178 -
18d For our recent synthesis of indole derivatives, see:
Pal M.Dakarapu R.Padakanti S. J. Org. Chem. 2004, 69: 2913 -
19a o-Iodoanilides were prepared according to the procedure described in the literature, see:
Xiao W.-J.Alper H. J. Org. Chem. 1999, 64: 9646 -
19b
All the terminal alkynes used are commercially available.
-
19c
General Procedure for the Preparation of 2-Substituted Indoles(4): A mixture of 1e (1.60 mmol), 10% Pd/C (51 mg, 0.05 mmol), PPh3 (50 mg, 0.19 mmol), CuI (18 mg, 0.09 mmol) and 2-aminoethanol (4.83 mmol) in H2O (8 mL) was stirred at 25 °C for 1 h under nitrogen. The acetylenic compound 2 (4.00-5.00 mmol) was added slowly to the mixture with stirring. The reaction mixture was then stirred at 80 °C for the time indicated in Table [1] . The mixture was cooled to r.t., diluted with EtOAc (120 mL) and filtered through celite. The filtrate was collected, washed with cold H2O (2 × 75 mL), dried over Na2SO4, filtered and concentrated under vacuum. The residue thus obtained was purified by column chromatography (hexane-EtOAc) to afford the desired product.
Spectral and analytical data for 4a: light brown solid; yield 70%; mp 128-130 °C (hexane). 1H NMR (200 MHz, CDCl3): δ = 7.98 (d, J = 8.4 Hz, 1 H), 7.54 (d, J = 2.5 Hz, 1 H), 7.43-7.38 (m, 5 H), 7.19 (d, J = 8.4 Hz, 1 H), 6.65 (s, 1 H), 2.69 (s, 3 H, SO2CH3), 2.46 (s, 3 H, CH3). MS (CI): m/z = 286 (100) [M + 1]. IR (neat): 1586.1, 1462.5, 1361.1 cm-1. 13C NMR (50 MHz, CDCl3): δ = 142.08, 136.24, 134.20, 131.99, 130.55, 129.96 (2 C), 128.68, 127.60 (2 C), 126.39, 120.88, 115.50, 112.98, 38.91 (SO2CH3), 21.18 (CH3). HPLC: 97.3% [Symmetry Shield RP18 (250 × 4.6 mm), 0.01 M KH2PO4:MeCN, 1 mL/min 225 nm, retention time 13.7 min]. Elemental analysis found C, 67.39; H, 5.35; N, 4.89; C16H15NO2S requires C, 67.34; H, 5.30; N. 4.91%.
Compound 4g: light brown solid; yield 80%; mp 78-80 °C (hexane). 1H NMR (200 MHz, CDCl3): δ = 7.89 (d, J = 8.7 Hz, 1 H), 7.34 (s, 1 H), 7.15 (d, J = 8.4 Hz, 1 H), 6.62 (s, 1 H), 5.02 (d, J = 7.9 Hz, 1 H), 3.09 (s, 3 H), 2.94 (d, J = 5.9 Hz, D2O exchangeable, OH), 2.43 (s, 3 H), 2.07-1.97 (m, 2 H), 1.09 (t, J = 7.3 Hz, 3 H). MS (CI): m/z = 250 (100) [M+ - OH]. IR (neat): 3540.1, 1462.4, 1358.0, 1159.6 cm-1. 13C NMR (50 MHz, CDCl3): δ = 143.42, 135.06, 133.29, 129.16, 126.19, 121.01, 113.67, 108.36, 67.76 (CHOH), 40.12 (SO2CH3), 28.59 (CH2), 20.98 (CH3), 10.53 (CH3). HPLC: 99.3% [Inertsil ODS 3V (250 × 4.6 mm), 0.01 M KH2PO4 in MeCN, 1 mL/min, 220 nm, retention time 16.6 min]. Elemental analysis found C, 58.38; H, 6.40; N, 5.27; C13H17NO3S requires C, 58.40; H, 6.41; N. 5.24%. - 20 Although the methanesulfonyl group of iodoarene 1e was tolerated under the present reaction conditions this group was removed efficiently from 4 using tetrabutylammonium fluoride in THF at elevated temperature to afford the corresponding indoles in good yields, see:
Yasuhara A.Sakamoto T. Tetrahedron Lett. 1998, 39: 595 -
21a
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467 -
21b
Novak Z.Szabo A.Repasi J.Kotschy A. J. Org. Chem. 2003, 68: 3327 -
21c
Mori Y.Seki M. J. Org. Chem. 2003, 68: 1571 -
21d
De la Rosa MA.Velarde E.Guzman A. Synth. Commun. 1990, 20: 2059 -
22a
Amatore C.Jutand A. Acc. Chem. Res. 2000, 33: 314 -
22b
Amatore C.Jutand A.Khalil F.M’Barki MA.Mottier L. Organometallics 1993, 12: 3168 -
22c The anionic species generated from Pd(PPh3)2Cl2 is thought to be the key intermediate and participates as active palladium species in these cross-coupling reactions, see:
Grosshenny V.Romero FM.Ziessel R. J. Org. Chem. 1997, 62: 1491 -
22d
Amatore C.Jutand A. J. Am. Chem. Soc. 1993, 115: 9531 - 23 Indole 4h was converted to the corresponding ketone using MnO2 in CH2Cl2 according to the procedure described in the literature. These ketones are of interest as analgesics.18a
See:
Jiang J.Gribble GW. Synth. Commun. 2002, 32: 2035
References
DRL publication No 427.