References
1 For a review see: Scolastico C.
Pure Appl. Chem.
1988,
60:
1689
2a
Katritzky AR.
Cui X.-L.
Yang B.
Steel PJ.
J. Org. Chem.
1999,
64:
1979
2b
Meyers AI.
Downing SV.
Weiser MJ.
J. Org. Chem.
2001,
66:
1413 ; and references therein
2c
Amat M.
Pérez M.
Llor N.
Bosch J.
Lago E.
Molins E.
Org. Lett.
2001,
3:
611
2d
Mayers AI.
Brengel GP.
Chem. Commun.
1997,
1
2e
Amat M.
Bosch J.
Hidalgo J.
Cantó M.
Pérez M.
Llor N.
Molins E.
Miravitlles C.
Orozco M.
Luque J.
J. Org. Chem.
2000,
65:
3074
2f
Munchhof MJ.
Meyers AI.
J. Am. Chem. Soc.
1995,
117:
5299
2g
Amat M.
Llor N.
Hidalgo J.
Escolano C.
Boch J.
J. Org. Chem.
2003,
68:
1919 ; and references cited therein
See for instance:
3a
Attygalle AB.
Morgan ED.
Chem. Soc. Rev.
1984,
13:
245
3b
Massiot G.
Delaude C. In
The Alkaloids
Vol. 27:
Brossi A.
Academic Press;
New York:
1986.
p.269
4a
Whitesell JK.
Minton MA.
Chen KM.
J. Org. Chem.
1988,
53:
5383
4b
Schlessinger RH.
Iwanowicz EJ.
Tetrahedron Lett.
1987,
28:
2083
4c
Short RP.
Kennedy RM.
Masamune S.
J. Org. Chem.
1989,
54:
1755
4d
Whitessel JK.
Chem. Rev.
1989,
89:
1581
5a
Takahata H.
Takehara H.
Ohkubo N.
Momose T.
Tetrahedron: Asymmetry
1990,
1:
561
5b
Cuny GD.
Buchwald SL.
Synlett
1995,
519
5c
Manfré F.
Kern JM.
Biellman JF.
J. Org. Chem.
1992,
57:
2060
5d
Dhimane H.
Vanucci-Balqué C.
Mamon L.
Lhommet G.
Eur. J. Org. Chem.
1998,
1955
6 For a recent revision see: Pichon M.
Figadère B.
Tetrahedron: Asymmetry
1996,
7:
927
7
Wang Q.
Sasaki VA.
Riche C.
Poitier P.
J. Org. Chem.
1999,
64:
8602 ; and references therein
8
Craig D.
Jones PS.
Rowlands GJ.
Synlett
1997,
1423
9
Bäckvall J.-E.
Schink HE.
Renko ZD.
J. Org. Chem.
1990,
55:
826
10
Andrés JM.
Herráiz-Sierra I.
Pedrosa R.
Pérez-Encabo A.
Eur. J. Org. Chem.
2000,
1719
11
Curci R.
Fiorentino M.
Troisi L.
Edwards JO.
Pater RH.
J. Org. Chem.
1980,
45:
4758
12
Experimental Procedure: To a solution of epoxyketone (3.0 mmol) in CHCl3 (3 mL), cooled to 0 °C was added
(-)-phenylglycinol (0.41 g, 3.0 mmol) in CHCl3 (3 mL) and MgSO4 (0.2 g). The mixture was stirred at that temperature for 2 h and then warmed to r.t. and stirred for additional 13 h. The mixture was filtered, the solvent concentrated and the residue was purified by flash chromatography (silca gel, EtOAc-hexane 1:4, v/v).
13 Spectroscopic data for compounds: 2a: [α]D
25 +27.2 (c 0.7, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.50 (s, 3 H), 1.60-1.73 (m, 1 H), 1.81-1.89 (m, 1 H), 1.96-2.09 (m, 2 H), 2.60 (br s, 1 H), 2.78 (dd, J = 5.0, 10.4 Hz, 1 H), 2.97-3.08 (m, 2 H), 3.98 (dd, J = 7.9, 9.9 Hz, 1 H), 4.13 (dd, J = 6.1, 7.9 Hz, 1 H), 4.62 (dd, J = 6.1, 9.9 Hz, 1 H), 7.25-7.5 (m, 5 H). 13C NMR (75 MHz, CD3Cl): δ = 25.9, 27.3, 37.9, 59.7, 64.2, 64.3, 67.0, 106.5, 128.1, 128.5 (2 C), 128.9 (2 C), 135.4. Compound 2b: [α]D
25 +7.3 (c 0.6, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J = 6.5 Hz, 3 H), 1.20-1.57 (m, 10 H), 1.58-1.73 (m, 2 H), 1.74-1.91 (m, 2 H), 1.92-2.15 (m, 2 H), 2.45 (br s, 1 H), 2.72 (dd, J = 4.7, 10.4 Hz, 1 H), 2.98 (dd, J = 3.7, 10.4 Hz, 1 H), 3.05-3.15 (m, 1 H), 4.0 (dd, J = 7.9, 10.0 Hz, 1 H), 4.11 (dd, J = 6.1, 7.8 Hz, 1 H), 4.60 (dd, J = 6.1, 10.0 Hz, 1 H), 7.25-7.52 (m, 5 H). 13C NMR (75 MHz, CD3Cl): δ = 14.1, 22.6, 25.2, 27.3, 29,3, 30.0, 31.8, 35.6, 39.2, 59.4, 63.8, 64.5, 66.6, 108.7, 128.2, 128.5 (2 C), 128.9 (2 C), 135.2. Compound 3a: [α]D
25 -97.8 (c 0.7, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 1.48 (s, 3 H), 1.75-1.86 (m, 1 H), 1.92-2.11 (m, 3 H), 2.21-2.27 (m, 1 H), 3.10-3.15 (m, 1 H), 3.26-3.35 (m, 2 H), 3.83 (t, J = 8.6 Hz, 1 H), 4.05 (t, J = 7.6 Hz, 1 H), 4.34 (dd, J = 6.1, 8.6 Hz, 1 H), 7.23-7.40 (m, 5 H). 13C NMR (75 MHz, CD3Cl): δ = 26.8, 27.2, 37.8, 63.2, 69.9, 70.8, 73.5, 105.8, 126.5 (2 C), 127.4, 128.7 (2 C), 141.6. Compound 3b: [α]D
25 -70.6 (c 0.5, CHCl3). 1H NMR (300 MHz, CDCl3) δ = 0.90 (t, J = 6.5 Hz, 3 H), 1.29-1.61 (m, 11 H), 1.69-1.78 (m, 1 H), 1.81-1.93 (m, 1 H), 1.95-2.12 (m, 3 H), 2.27 (br s, 1 H), 3.13 (tq, J = 5.7 Hz, 1 H), 3.25-3.38 (m, 2 H), 3.76 (t, J = 8.7 Hz, 1 H), 4.08 (dd, J = 7.2, 8.4 Hz, 1 H), 4.33 (dd, J = 7.2, 8.7 Hz, 1 H), 7.24-7.40 (m, 5 H). 13C NMR (75 MHz, CD3Cl): δ = 14.1, 22.6, 25.0, 26.9, 29.2, 29.9, 31.8, 35.0, 39.2, 63.3, 69.7, 71.0, 73.2, 108.2, 126.5 (2 C), 127.4, 128.7 (2 C), 141.7.
14a
Ishihara K.
Mori A.
Yamamoto H.
Tetrahedron
1990,
46:
4595
14b
Alexakis A.
Mangeney P.
Tetrahedron: Asymmetry
1990,
1:
417
14c
Meyers AI.
Burgess LE.
J. Org. Chem.
1991,
56:
2294
15
Petersson-Fasth H.
Riesinger SW.
Bäckvall JE.
J. Org. Chem.
1995,
60:
6091
16
Borch RF.
Evans AJ.
Wade JJ.
J. Am. Chem. Soc.
1997,
99:
162
17
Lipshutz B. In Organometallics in Synthesis
Schlosser M.
John Wiley;
New York:
1994.
p.305
18
Arseniyadis S.
Huang PQ.
Piveteau D.
Hüsson H.-P.
Tetrahedron
1988,
44:
2457
19 Data for N-Boc Pyrrolidines: 5a: [α]D
25 -9.9 (c 1.2, CHCl3). ent-5a: [α]D
25 +9.95 (c 1.3, CHCl3). N-Boc derivatives of (2
R
,5
R
)-5-heptyl-2-hydroxymethyl pyrrolidine: [α]D
25 +4.1 (c 0.8, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, J = 6.2 Hz, 3 H), 1.25 (m, 10 H), 1.44 (s, 9 H), 1.51-1.65 (m, 3 H), 1.82-1.97 (m, 3 H), 3.51 (t, J = 8.6 Hz, 1 H), 3.67 (t, J = 8.4 Hz, 1 H), 3.72-3.89 (m, 1 H), 3.90-4.01 (m, 1 H), 5.12 (br s, 1 H). 13C NMR (75 MHz, CD3Cl): δ = 14.1, 22.6, 26.5, 26.8, 28.4 (3 C), 28.9, 29.2, 29.5, 31.8, 35.4, 59.2, 61.1, 68.8, 80.2, 157.4. N-Boc derivatives of (2
S
,5
S
)-5-heptyl-2-hydroxymethyl pyrrolidine: [α]D
25 -4.0 (c 0.9, CHCl3).
20
Penhoat M.
Levacher V.
Dupas G.
J. Org. Chem.
2003,
68:
9517
21
Lázár L.
Fülöp F.
Eur. J. Org. Chem.
2003,
3025