References
1a
Chevolot L.
Chevolot A.-M.
Gajhede M.
Lasen C.
Anthoni U.
Christophersen C.
J. Am. Chem. Soc.
1985,
107:
4542
1b
Anthoni U.
Chevolot L.
Lasen C.
Nielsen PH.
Christophersen C.
J. Org. Chem.
1987,
52:
4709
For other synthetic studies from other laboratory, see:
2a
Lin X.
Weinreb SM.
Tetrahedron Lett.
2001,
42:
2631
2b Sun, C.; Lin, X.; Weinreb, S. M. Presented at the 19th International Congress of Heterocyclic Chemistry, Colorado, USA, August 2003; Abstracts p. 324.
3
Nishikawa T.
Kajii S.
Isobe M.
Chem. Lett.
2004,
33:
440
4 The oxindole-β-lactam 4 (R = Bn, MOM) was synthesized in an analogous way to those described in ref.
[3]
; however, the yields were poor.
5
Somei M.
Heterocycles
1999,
50:
1157
For examples, see:
6a
Nakatsuka S.
Tanino H.
Kishi Y.
J. Am. Chem. Soc.
1975,
97:
5008
6b
Nakatsuka S.
Tanino H.
Kishi Y.
J. Am. Chem. Soc.
1975,
97:
5010
6c
Baldwin JE.
Au A.
Christie M.
Haber SB.
Hesson D.
J. Am. Chem. Soc.
1975,
97:
5957
7
Scott AI.
Yoo SE.
Chung S.-K.
Lacadie JA.
Tetrahedron Lett.
1976,
17:
1137
8
Hone ND.
Payne LJ.
Tetrahedron Lett.
2000,
41:
6149
9
Singh SB.
Tomassini JE.
J. Org. Chem.
2001,
66:
5504
10
Bittner S.
Knobler Y.
Frankel M.
Tetrahedron Lett.
1965,
6:
95
11 Spectral Data for 14a: Mp 144-148 °C. IR (KBr): 3367, 2914, 1773, 1715, 1534, 1349, 1193 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.29 (3 H, s, -CH
3
), 3.35 (3 H, s, -N-CH
3
), 3.64 (2 H, s, -CH
2
-), 7.03 (1 H, br t, J = 7.5 Hz, indole), 7.11 (1 H, td, J = 7.5 Hz, indole), 7.21 (1 H, br d, J = 7.5 Hz, indole), 7.25 (1 H, br d, J = 7.5 Hz, indole), 7.84 (1 H, br s, NH of indole), 8.09 (2 H, br d, J = 9.0 Hz, phenyl), 8.21 (2 H, d, J = 9.0 Hz, phenyl). 13C NMR (100 MHz, CDCl3): δ = 11.8, 29.5, 39.5, 103.0, 110.4, 117.6, 119.7, 121.6, 124.1, 127.4, 128.1, 129.0, 130.7, 132.9, 135.0, 139.3, 151.2, 174.7. HRMS (FAB): m/z calcd for C18H18N3O6S1 [M + H]: 404.0916. Found: 404.0933.
12 Data for 15a: IR (KBr): 3423, 2956, 1763, 1589, 1459, 1377 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.35 (3 H, s, -CH
3
), 2.57 (3 H, s, -N-CH
3
), 3.26 (1 H, d, J = 15.0 Hz, -CH
A
HB-), 3.32 (1 H, d, J = 15.0 Hz, -CHA
H
B
-), 7.27 (1 H, br t, J = 7.5 Hz, indole), 7.38 (1 H, d, J = 7.5 Hz, indole), 7.42 (1 H, td, J = 7.5 Hz, indole), 7.54 (1 H, d, J = 7.5 Hz, indole). 13C NMR (100 MHz, CDCl3): δ = 15.0, 26.7, 46.1, 69.1, 120.9, 122.2, 126.3, 130.4, 133.5, 154.2, 165.8, 180.4. HRMS (FAB): m/z calcd for C12H13N2O1 [M + H]: 201.1028. Found: 201.1000.
13 In contrast to the report by Weinreb (2-vinyl substituent instead of 2-methyl substituent) (ref.
[2a]
), products 15a and 15b were stable enough to purify on silica gel chromatography.
14
N-Methylamide 16a was separated as its Boc derivative from the mixture of 15a and 16a with Boc2O and DMAP. The structure of 16a was determined by the following spectroscopic data. IR (KBr): 3296, 2976, 2933, 1732, 1653, 1541, 1459, 1358, 1324, 1137 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.70 (9 H, s, -Boc), 2.55 (3 H, s, -CH
3
), 2.71 (3 H, d, J = 5.0 Hz, -NH-CH
3
), 3.65 (2 H, s, -CH
2
-), 5.50 (1 H, br s, -NH-Me), 7.22-7.32 (2 H, m, indole), 7.41 (1 H, br d, J = 7 Hz, indole), 8.12 (1 H, br d, J = 8.0 Hz, indole). 13C NMR (100 MHz, CDCl3): δ = 14.0, 26.4, 28.3, 32.0, 84.2, 111.6, 115.6, 117.8, 123.0, 124.1, 129.3, 135.7, 135.8, 150.5, 170.9. HRMS (FAB): m/z calcd for C17H23N2O3 [M + H]: 303.1709. Found: 303.1672.
15
Piper JR.
Stevens FJ.
J. Heterocycl. Chem.
1966,
95
16 Data for 15b: IR (KBr): 3312, 2928, 1762, 1586, 1456, 1377 cm-1. 1H NMR (400 MHz, CDCl3): δ = 2.34 (3 H, s, -CH
3
), 2.55 (3 H, s, -N-CH
3
), 3.23 (1 H, d, J = 15.0 Hz, -CH
A
HB-), 3.30 (1 H, d, J = 15.0 Hz, -CHA
H
B
-), 7.24 (1 H, d, J = 8.0 Hz, indole), 7.41 (1 H, dd, J = 8.0, 1.5 Hz, indole), 7.67 (1 H, d, J = 1.5 Hz, indole). 13C NMR (100 MHz, CDCl3): δ = 15.0, 26.8, 46.1, 69.0, 123.2, 124.0, 124.4, 129.1, 132.5, 155.5, 165.3, 182.2. Anal. Calcd for C12H11BrN2O: C, 51.63; H, 3.97; N, 10.04. Found: C, 51.64; H, 4.05; N, 10.01.
17 Quite recently, a synthesis of indolenine-3 spiro compounds through intramolecular SN2-type reaction at the oxime nitrogen was reported, see: Tanaka K.
Mori Y.
Narasaka K.
Chem. Lett.
2004,
33:
26