Abstract
The Baylis-Hillman adducts 1 were treated with a large amount of CCl3 CN in the presence of DBU without solvent to give in good yield the corresponding
trichloroacetimidates 5 which by thermal [3.3]sigmatropic rearrangement were converted into the corresponding
(E )-2-trichloroacetylaminomethyl-2-propenoates 6 , exclusively. On the contrary, when compounds 5 were treated with a catalytic amount of DABCO in dichloromethane, 2-methylene-3-trichloroacetylamino
esters 7 were obtained in good yield. Both 5a and 7a underwent iodocyclization, to give a cyclic intermediate precursor of a polyfunctionalized
sequence, and the differences in stereoselectivity were in agreement with computational
results.
Key words
amino acids - amides - rearrangement - cyclization - stereoselectivity
References
<A NAME="RP05804SS-1A">1a </A>
Drewes SE.
Roos GHP.
Tetrahedron
1988,
44:
4653
<A NAME="RP05804SS-1B">1b </A>
Basavaiah D.
Rao PD.
Hyma RS.
Tetrahedron
1996,
52:
8001
<A NAME="RP05804SS-1C">1c </A>
Ciganek E.
Org. React.
1997,
51:
201
<A NAME="RP05804SS-1D">1d </A>
Basavaiah D.
Rao AJ.
Satyanarayana J.
Chem. Rev.
2003,
103:
811
<A NAME="RP05804SS-2A">2a </A>
Morita K.
Suzuki Z.
Hirose H.
Bull. Chem. Soc. Jpn.
1968,
41:
2815
<A NAME="RP05804SS-2B">2b </A>
Baylis AB, and
Hillman MED. inventors; German Patent 2155113.
; Chem. Abstr . 1972 , 77 , 34174
<A NAME="RP05804SS-3A">3a </A>
Brzezinski LJ.
Rafel S.
Lehavy JW.
J. Am. Chem. Soc.
1997,
119:
4317
<A NAME="RP05804SS-3B">3b </A>
Aggarwal VK.
Mereu A.
Tarver GJ.
McCague R.
J. Org. Chem.
1998,
63:
7183
<A NAME="RP05804SS-3C">3c </A>
Kataoka T.
Iwama T.
Tsujiyama S.
Iwamura T.
Watanabe S.
Tetrahedron
1998,
54:
11813
<A NAME="RP05804SS-3D">3d </A>
Shi M.
Jiang J.-K.
Feng Y.-S.
Org. Lett.
2000,
2:
2397
<A NAME="RP05804SS-3E">3e </A>
Yang K.-S.
Chen K.
Org. Lett.
2000,
2:
729
<A NAME="RP05804SS-4">4 </A>
Ciclosi M.
Fava C.
Galeazzi R.
Orena M.
Sepulveda-Arques J.
Tetrahedron Lett.
2002,
58:
2199
For synthesis of similar compounds, see:
<A NAME="RP05804SS-5A">5a </A>
Perlmutter P.
Teo CC.
Tetrahedron Lett.
1984,
25:
5951
<A NAME="RP05804SS-5B">5b </A>
Bertenshaw S.
Kahn M.
Tetrahedron Lett.
1989,
30:
2731
<A NAME="RP05804SS-5C">5c </A>
Cyrener J.
Burger K.
Monatsh. Chem.
1994,
125:
1279
<A NAME="RP05804SS-5D">5d </A>
Kündig EP.
Xu LH.
Schnell B.
Synlett
1994,
413
<A NAME="RP05804SS-5E">5e </A>
Campi EM.
Holmes A.
Perlmutter P.
Teo CC.
Aust. J. Chem.
1995,
48:
1535
<A NAME="RP05804SS-5F">5f </A>
Richter H.
Jung G.
Tetrahedron Lett.
1998,
39:
2729
<A NAME="RP05804SS-5G">5g </A>
Bucholz R.
Hoffmann HMR.
Helv. Chim. Acta
1991,
74:
1213
<A NAME="RP05804SS-5H">5h </A>
Kim HS.
Kim TY.
Chung YM.
Lee HJ.
Kim JN.
Tetrahedron Lett.
2000,
41:
2613
<A NAME="RP05804SS-5I">5i </A>
Rajesh S.
Banerji B.
Iqbal J.
J. Org. Chem.
2002,
67:
7852
<A NAME="RP05804SS-6A">6a </A>
Galeazzi R.
Mobbili G.
Orena M.
Tetrahedron
1996,
52:
1069
<A NAME="RP05804SS-6B">6b </A>
Galeazzi R.
Geremia S.
Mobbili G.
Orena M.
Tetrahedron: Asymmetry
1996,
7:
79
<A NAME="RP05804SS-6C">6c </A>
Galeazzi R.
Geremia S.
Mobbili G.
Orena M.
Tetrahedron: Asymmetry
1996,
7:
3573
<A NAME="RP05804SS-6D">6d </A>
Galeazzi R.
Mobbili G.
Orena M.
Tetrahedron: Asymmetry
1997,
8:
133
<A NAME="RP05804SS-6E">6e </A>
Galeazzi R.
Mobbili G.
Orena M.
Tetrahedron
1999,
55:
261
<A NAME="RP05804SS-6F">6f </A>
Galeazzi R.
Mobbili G.
Orena M.
Tetrahedron
1999,
55:
4029
<A NAME="RP05804SS-6G">6g </A>
Galeazzi R.
Martelli G.
Mobbili G.
Orena M.
Rinaldi S.
Tetrahedron: Asymmetry
2003,
14:
3353
<A NAME="RP05804SS-6H">6h </A>
Fava C.
Galeazzi R.
Mobbili G.
Orena M.
Tetrahedron: Asymmetry
2003,
14:
3697
<A NAME="RP05804SS-7A">7a </A>
Overman LE.
J. Am. Chem. Soc.
1974,
96:
597
<A NAME="RP05804SS-7B">7b </A>
Overman LE.
J. Am. Chem. Soc.
1976,
98:
2901
<A NAME="RP05804SS-7C">7c </A>
Mehmandust M.
Petit Y.
Larcheveque M.
Tetrahedron Lett.
1992,
33:
4313
<A NAME="RP05804SS-7D">7d </A>
Martin C.
Bortolussi M.
Bloch R.
Tetrahedron Lett.
1999,
40:
3735
<A NAME="RP05804SS-8">8 </A>
Nishikawa T.
Asai M.
Ohyabu N.
Isobe M.
J. Org. Chem.
1998,
63:
188
<A NAME="RP05804SS-9A">9a </A>
Kang SH.
Kim GT.
Yoo YS.
Tetrahedron Lett.
1997,
38:
603
<A NAME="RP05804SS-9B">9b </A>
Kang SH.
Kim JS.
Youn J.-H.
Tetrahedron Lett.
1998,
39:
9047
<A NAME="RP05804SS-10A">10a </A> An adduct of DBU with alkyl bromides has been already reported:
Oediger H.
Kabbe H.
Moller F.
Either K.
Chem. Ber.
1966,
99:
2012
<A NAME="RP05804SS-10B">10b </A>
Spectral data for the adduct A : 1 H NMR (CDCl3 , 200 MHz): δ = 1.42-1.76 (m, 6 H), 1.78-1.92 (m, 2 H), 2.56-2.71 (m, 2 H), 3.15-3.39
(m, 6 H). 13 C NMR (CDCl3 , 50 MHz): δ = 19.5, 24.0, 26.8, 28.9, 32.0, 37.8, 48.7, 54.4, 77.2, 166.1.
<A NAME="RP05804SS-11A">11a </A>
The reactivity of the Baylis-Hillman adducts agrees with the relative acidity of the
hydroxy functionality obtained from calculations. All the geometries were optimized
at DFT level of theory. Ab initio DFT calculations were carried out using the GAUSSIAN 98 program package. For DFT
calculations the hybrid functional B3LYP, which contains gradient corrections for
both exchange and correlation was chosen. The molecular electrostatic potential and
the frontier molecular orbital were calculated for all the compounds showing no remarkable
differences. The stability of both the reactants and the conjugate bases was calculated
referring to the isodesmic reactions and the correlated pKa values and the geometry of both reactants and products were fully optimized at B3LYP/6-31G*
theory level: 1c , ΔE 14.08 kcal/mol; 1d , ΔE 13.51 kcal/mol; 1b , ΔE 5.09 kcal/mol; 1e , ΔE 4.59 kcal/mol; 1a , ΔE 0.0 kcal/mol; 1g , ΔE -3.98 kcal/mol; 1i , ΔE -5.46 kcal/mol; 1h , ΔE -5.76 kcal/mol; 1k , ΔE -5.51 kcal/mol; 1j , ΔE -5.71 kcal/mol. For leading references, see:
<A NAME="RP05804SS-11B">11b </A>
Weiner SJ.
Kollman PA.
Nguyen DT.
Case DA.
J. Comput. Chem.
1986,
7:
230
<A NAME="RP05804SS-11C">11c </A>
Chang G.
Guida WC.
Still WC.
J. Am. Chem. Soc.
1989,
111:
4379
<A NAME="RP05804SS-11D">11d </A>
Mohamadi H.
Richards NGJ.
Guida WC.
Liskamo R.
Lipton M.
Caulfield C.
Chang G.
Hendrickson T.
Still WC.
J. Comput. Chem.
1990,
11:
440
<A NAME="RP05804SS-11E">11e </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Zakrzewski VG.
Montgomery JA.
Stratmann RE.
Burant JC.
Dapprich S.
Millan JM.
Daniels AD.
Kudin KN.
Strain MC.
Farkas O.
Tomasi J.
Barone V.
Cossi M.
Cammi R.
Mennucci B.
Pomelli C.
Adamo C.
Clifford S.
Ochterski J.
Patersson GA.
Ayala PY.
Cui Q.
Morokuma K.
Malik DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Cioslowski J.
Ortiz JV.
Baboul AG.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Gomperts R.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Andres JL.
Gonzales C.
Head-Gordon M.
Replogle ES.
Pople J.
Gaussian 98 Revision A.9
Gaussian Inc.;
Pittsburgh:
1998.
<A NAME="RP05804SS-11F">11f </A>
Lee C.
Yang W.
Parr RG.
Phys. Rev. B: Condens. Matter Mater. Phys.
1988,
37:
785
<A NAME="RP05804SS-11G">11g </A>
Becke AD.
Phys. Rev. A: At., Mol., Opt. Phys.
1988,
38:
3098
<A NAME="RP05804SS-11H">11h </A>
Mihelich B.
Savin A.
Stoll H.
Preuss H.
Chem. Phys. Lett.
1989,
157:
200
<A NAME="RP05804SS-11I">11i </A>
Becke AD.
J. Chem. Phys.
1993,
98:
5648
<A NAME="RP05804SS-12">12 </A>
It is worth mentioning that molecular mechanics calculations carried out for all compounds
5 indicate the presence of a number of conformers within a short energy range. Rotameric
mixtures are evidenced by the 1 H NMR spectra of the ethyl derivatives 5b ,d ,f ,k , where a multiplet or a double quartet collapsing at 50 °C into a quartet takes place
for the ethyl quartet.
<A NAME="RP05804SS-13">13 </A>
Foucaud A.
El Guemmout F.
Bull. Soc. Chim. Fr.
1989,
403
<A NAME="RP05804SS-14">14 </A> A concerted four-centers mechanism cannot be excluded, and investigation is currently
underway. For a similar reaction recently reported in the literature, see:
Mamaghani M.
Badrian A.
Tetrahedron Lett.
2004,
45:
1547
<A NAME="RP05804SS-15A">15a </A>
Cardillo G.
Orena M.
Tetrahedron
1990,
46:
3321
<A NAME="RP05804SS-15B">15b </A>
Orena M.
Amination Reactions Promoted by Electrophiles , In Houben-Weyl , Methods of Organic Chemistry, Stereoselective Synthesis
Vol. E 2le:
Helmchen G.
Hofmann RW.
Mulzer J.
Schauman E.
Thieme;
Stuttgart:
1995.
p.5291-5355
<A NAME="RP05804SS-15C">15c </A>
Jordá-Gregori JM.
González-Rosende ME.
Sepùlveda-Arques J.
Galeazzi R.
Orena M.
Tetrahedron: Asymmetry
1999,
10:
1135
<A NAME="RP05804SS-15D">15d </A>
Jordà-Gregori JM.
Gonzalez-Rosende ME.
Cava-Montesinos P.
Sepùlveda-Arques J.
Galeazzi R.
Orena M.
Tetrahedron: Asymmetry
2000,
11:
3769