References
1a
Franck B.
Nonn A.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1795
1b
Sundberg RJ. In
Comprehensive Hetero-cyclic Chemistry
Vol.2:
Katritzky A.
Rees CW.
Scriven EFV.
Pergamon Press;
Oxford:
1996.
p.1-257
2a
Itoh S.
Fukui Y.
Haranou S.
Ogino M.
Komatsu M.
Ohshiro Y.
J. Org. Chem.
1992,
57:
4452
2b
Wco J.
Sigurdsson ST.
Hopkins PB.
J. Am. Chem. Soc.
1993,
115:
3407
2c
Hayakawa Y.
Kawasaki K.
Seto H.
Tetrahedron Lett.
1992,
33:
2701
2d
Lainton JAH.
Huffman JW.
Martin BR.
Compto DR.
Tetrahedron Lett.
1995,
36:
1401
2e Tatsuta K. inventors; Jpn. Kokai Tokkyo Koho JP07206815.
2f Kimura T., Noguchi Y., Nakao A.; Eur. Pat. Appl. EP 799823, 1997
2g
Khanna IK.
Weter RM.
Yu Y.
Collins PW.
Miyashio JM.
Kobddt CM.
Veehuizen AW.
Currie JL.
Seibert K.
Isakson PC.
J. Med. Chem.
1997,
40:
1619
3a
Berree F.
Marchand E.
Morel G.
Tetrahedron Lett.
1992,
33:
6155
3b
Dieter RK.
Yu H.
Org. Lett.
2000,
2:
2283
3c
Katritzky AR.
Zhang L.
Yao J.
J. Org. Chem.
2000,
65:
8074
3d
Cheung KM.
Shoolingin-Jordan PM.
Synthesis
2001,
1627
3e
Trost BM.
Keinan E.
J. Org. Chem.
1980,
45:
2741
3f
Periasamy M.
Srinivas G.
Bharathi P.
J. Org. Chem.
1999,
64:
4204
4
Sundberg RJ. In
Comprehensive Heterocyclic Chemistry
Vol. 4:
Bird CW.
Cheeseman GWH.
Pergamon Press;
Oxford:
1984.
p.331
5
Shiraish H.
Nishitani T.
Sakagushi S.
J. Org. Chem.
1998,
63:
6234
6
Ranu BC.
Dey SS.
Tetrahedron Lett.
2003,
44:
2865
7a
Ranu BC.
Hajra A.
Jana U.
Synlett
2000,
75
7b
Ranu BC.
Hajra A.
Tetrahedron
2001,
57:
4767
8
Gao Y.
Shirai M.
Sato F.
Tetrahedron Lett.
1996,
37:
7787
9
Gao Y.
Yoshida Y.
Sato F.
Synlett
1997,
1353
10
Lee CF.
Yang LM.
Hwu TY.
Feng AS.
Tseng JC.
Luh TY.
J. Am. Chem. Soc.
2000,
122:
4992
11
Katritzky AR.
Wang ZQ.
Li JQ.
Levell JR.
J. Heterocycl. Chem.
1997,
34:
1379
12
McMurry JE.
Fleming MP.
J. Am. Chem. Soc.
1974,
96:
4708
13a
McMurry JE.
Miller DD.
Tetrahedron Lett.
1983,
24:
1885
13b
Shi DQ.
Lu ZS.
Mu LL.
Dai GY.
Synth. Commun.
1998,
28:
1073
13c
Zhou LH.
Tu SJ.
Shi DQ.
Dai GY.
Chen WX.
Synthesis
1998,
851
13d
Zhou LH.
Tu SJ.
Shi DQ.
Dai GY.
J. Chem. Res., Synop.
1998,
398
13e
Li J.
Shi DQ.
Chen WX.
Heterocycles
1997,
45:
2381
14
Shi DQ.
Chen JX.
Chai WY.
Chen WX.
Kao TY.
Tetrahedron Lett.
1993,
34:
2963
15
Shi DQ.
Mu LL.
Lu ZS.
Dai GY.
Synth. Commun.
1997,
27:
4121
16
Zhou LH.
Shi DQ.
Dai GY.
Chen WX.
Tetrahedron Lett.
1997,
38:
2729
17a
Shi DQ.
Rong LC.
Wang JX.
Zhuang QY.
Wang XS.
Hu HW.
Tetrahedron Lett.
2003,
44:
3199
17b
Shi DQ.
Wang JX.
Shi CL.
Rong LC.
Zhuang QY.
Hu HW.
Synlett
2004,
1098
18 The general procedure is represented as follows: TiCl4 (1.65 mL, 15 mmol) was added dropwise using a syringe to a stirred suspension of Zn powder (1.95 g, 30 mmol) in freshly distilled dry THF (20 mL) at r.t. under a N2 atmosphere. The mixture was refluxed for 2 h. The suspension of low-valent titanium reagent formed was cooled to r.t. and a solution of 1,3-diketone(1) (5 mmol) and imine 2 (5 mmol) in THF (5 mL) was added carefully. The reaction mixture was stirred for 4 h at r.t. On completion of the reaction most of the solvent was removed in vacuo. The residue was poured into 5% HCl (100 mL) and extracted with CHCl3 (4 × 30mL). The combined organic layer was washed with H2O (4 × 30 mL), dried (Na2SO4), and the solvent was removed to give the crude product, which was purified by column chromatography [silica gel, acetone-petroleum ether (bp 60-90ºC), 1:6] to give pure 3.
19 Typical data for representative compounds: Compound 3a, 1,2,3,5-tetraphenylpyrrole: mp 202-204 °C. IR: νmax = 3050, 1600, 1495, 1450, 1370, 1075, 1030, 915, 760, 695 cm-1. 1H NMR (400 MHz, CDCl3): = 6.71 (1 H, s, C4-H), 6.98-6.99 (2 H, m, ArH), 7,03-7.05 (2 H, m, ArH), 7.11-7.26 (16 H, m, ArH). MS:
m/z
(%) = 371 (100). Anal. Calcd for C28H21N: C, 90.53; H, 5.70; N, 3.77%. Found: C, 90.56; H, 5.59; N, 3.74%. Compound 5a, 3,5-diphenyl-2-(3′,4′-dimethoxy-phenyl)pyrrole: mp 184-185 °C. IR: νmax = 3350, 3030, 1600, 1515, 1495, 1460, 1245, 1220, 1140, 1025, 855, 815, 760, 695 cm-1. 1H NMR (400 MHz, CDCl3): δ = 3.66 (6 H, s, 2 × CH3O), 6.47 (1 H, s,C4-H), 6.87-7.40 (13 H, m, ArH), 8.43 (1 H, s, NH). MS: m/z (%) = 355 (100), 340 (22). Anal. Calcd for C24H21NO2: C, 81.10; H, 5.96; N, 3.94%. Found: C, 81.28; H, 5.82; N, 3.85%.
20 X-Ray data for 3g: C28H19Cl2N; M = 440.34, colorless block crystals, 0.54 × 0.50 × 0.50 mm, monoclinic, space group P21/c, a = 9.952 (2), b = 9.863 (2), c = 23.460 (6) Å, β = 99.62 (2)°, V = 2270.4 (9) Å3, Z = 4, Dc = 1.288 gcm-3. F(000) = 912, µ(MoKα) = 0.301 mm-1. Intensity data were collected on a Siemens P4 diffractometer with graphite monochromated MoKα radiation (λ = 0.71073 Å), using scan mode with 1.76°<q<25.50°. 4205 unique reflections were measured and 2267 reflections with I>2σ(I) were used in the refinement. The structure was solved by direct methods and expanded using Fourier techniques. The final refinement was converged to R = 0.0387 and wR = 0.0793.