References
<A NAME="RU15804ST-1">1 </A>
Murakami M.
Ito Y.
Activation of Unreactive Bonds and Organic Synthesis , In Topics in Organometallic Chemistry
Vol 3:
Murai S.
Springer;
Berlin:
1999.
p.97
<A NAME="RU15804ST-2A">2a </A>
Mitsudo T.-a.
Kondo T.
Synlett
2001,
309
<A NAME="RU15804ST-2B">2b </A>
Nishimura T.
Uemura S.
Synlett
2004,
201
<A NAME="RU15804ST-3">3 </A>
Kaminsky W.
Hartmann F.
Angew. Chem. Int. Ed.
2000,
39:
331
<A NAME="RU15804ST-4A">4a </A>
Butcher JA. inventors; US Pat. US 5315055.
<A NAME="RU15804ST-4B">4b </A>
Dufaud V.
Basset J.-M.
Angew. Chem. Int. Ed.
1998,
37:
806
<A NAME="RU15804ST-4C">4c </A>
Uemichi Y.
Takuma K.
Ayame A.
Chem. Commun.
1998,
1975
<A NAME="RU15804ST-4D">4d </A>
Pifer A.
Sen A.
Angew. Chem. Int. Ed.
1998,
37:
3306
For reviews, see:
<A NAME="RU15804ST-5A">5a </A>
Bishop KC.
Chem. Rev.
1976,
76:
461
<A NAME="RU15804ST-5B">5b </A>
Crabtree RH.
Chem. Rev.
1985,
85:
245
<A NAME="RU15804ST-5C">5c </A>
Rybtchinski B.
Milstein D.
Angew. Chem. Int. Ed.
1999,
38:
870
<A NAME="RU15804ST-5D">5d </A>
Takahashi T.
Kanno K.-i.
Yuki Gosei Kagaku Kyokaishi
2003,
61:
938
<A NAME="RU15804ST-6A">6a </A>
Murakami M.
Amii H.
Ito Y.
Nature
1994,
370:
540
<A NAME="RU15804ST-6B">6b </A>
Edelbach BL.
Lachicotte RJ.
Jones WD.
J. Am. Chem. Soc.
1998,
120:
2843
<A NAME="RU15804ST-6C">6c </A>
Suginome M.
Matsuda T.
Ito Y.
J. Am. Chem. Soc.
2000,
122:
11015
<A NAME="RU15804ST-6D">6d </A>
Kondo T.
Kaneko Y.
Taguchi Y.
Nakamura A.
Okada T.
Shiotsuki M.
Ura Y.
Wada K.
Mitsudo T.-a.
J. Am. Chem. Soc.
2002,
124:
6824
<A NAME="RU15804ST-7A">7a </A>
Suggs JW.
Jun C.-H.
J. Chem. Soc., Chem. Commun.
1985,
92
<A NAME="RU15804ST-7B">7b </A>
Gozin M.
Weisman A.
Ben-David Y.
Milstein D.
Nature
1993,
364:
699
<A NAME="RU15804ST-7C">7c </A>
Jun C.-H.
Lee H.
J. Am. Chem. Soc.
1999,
121:
880
<A NAME="RU15804ST-7D">7d </A>
Chatani N.
Ie Y.
Kakiuchi F.
Murai S.
J. Am. Chem. Soc.
1999,
121:
8645
<A NAME="RU15804ST-7E">7e </A>
Jun C.-H.
Lee H.
Lim S.-G.
J. Am. Chem. Soc.
2001,
123:
751
<A NAME="RU15804ST-8A">8a </A>
Watson PL.
Roe DC.
J. Am. Chem. Soc.
1982,
104:
6471
<A NAME="RU15804ST-8B">8b </A>
Bunel E.
Burger BJ.
Bercaw JE.
J. Am. Chem. Soc.
1988,
110:
976
<A NAME="RU15804ST-9A">9a </A>
Harayama H.
Kuroki T.
Kimura M.
Tanaka S.
Tamaru Y.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2352
<A NAME="RU15804ST-9B">9b </A>
Kondo T.
Kodoi K.
Nishinaga E.
Okada T.
Morisaki Y.
Watanabe Y.
Mitsudo T.-a.
J. Am. Chem. Soc.
1998,
120:
5587
<A NAME="RU15804ST-9C">9c </A>
Terao Y.
Wakui H.
Satoh T.
Miura M.
Nomura M.
J. Am. Chem. Soc.
2001,
123:
10407
<A NAME="RU15804ST-9D">9d </A>
Nishimura T.
Araki H.
Maeda Y.
Uemura S.
Org. Lett.
2003,
5:
2997
For stoichiometric reactions, see:
<A NAME="RU15804ST-10A">10a </A>
Flood TC.
Statler JA.
Organometallics
1984,
3:
1795
<A NAME="RU15804ST-10B">10b </A>
McNeill K.
Andersen RA.
Bergman RG.
J. Am. Chem. Soc.
1997,
119:
11244
For catalytic reactions, see:
<A NAME="RU15804ST-11A">11a </A>
Bessmertnykh AG.
Blinov KA.
Grishin YK.
Donskaya NA.
Tveritinova EV.
Yur‘eva NM.
Beletskaya IP.
J. Org. Chem.
1997,
62:
6069
<A NAME="RU15804ST-11B">11b </A>
Tsukada N.
Shibuya A.
Nakamura I.
Yamamoto Y.
J. Am. Chem. Soc.
1997,
119:
8123
<A NAME="RU15804ST-11C">11c </A>
Nishimura T.
Ohe K.
Uemura S.
J. Am. Chem. Soc.
1999,
121:
2645
<A NAME="RU15804ST-11D">11d </A>
Park S.-B.
Cha JK.
Org. Lett.
2000,
2:
147
<A NAME="RU15804ST-11E">11e </A>
Nishimura T.
Uemura S.
J. Am. Chem. Soc.
2000,
122:
12049
<A NAME="RU15804ST-11F">11f </A>
Nishimura T.
Matsumura S.
Maeda Y.
Uemura S.
Chem. Commun.
2002,
50
<A NAME="RU15804ST-11G">11g </A>
Itazaki M.
Nishihara Y.
Osakada K.
J. Org. Chem.
2002,
67:
6889
<A NAME="RU15804ST-12A">12a </A>
Murahashi S.-I.
Takaya H.
Acc. Chem. Res.
2000,
33:
225
<A NAME="RU15804ST-12B">12b </A>
Murahashi S.-I.
Takaya H.
Naota T.
Pure Appl. Chem.
2002,
74:
19
<A NAME="RU15804ST-13">13 </A>
Takaya H.
Naota T.
Murahashi S.-I.
J. Am. Chem. Soc.
1998,
120:
4244
<A NAME="RU15804ST-14">14 </A>
Takaya H.
Yoshida K.
Isozaki K.
Terai H.
Murahashi S.-I.
Angew. Chem. Int. Ed.
2003,
42:
3302
<A NAME="RU15804ST-15">15 </A>
General Procedure for the Iridium-Catalyzed C-C Bond Cleavage of 2-Methyl-2-phenyl-pentanedinitrile
(5).
In a 25 mL sealed tube, iridium catalysts (0.1 mmol), 5 (1 mmol), and toluene (0.5 mL) were placed and stirred for 12 h at 150 °C under argon
atmosphere. The yield of 2-phenylpropionitrile 6 was determined by NMR using dibenzyl as an internal standard.
<A NAME="RU15804ST-16A">16a </A>
Goldman AS.
Halpern J.
J. Am. Chem. Soc.
1987,
109:
7537
<A NAME="RU15804ST-16B">16b </A>
Klabunde U.
Parshall GW.
J. Am. Chem. Soc.
1972,
94:
9081
<A NAME="RU15804ST-17">17 </A>
General Procedure for the Iridium-Catalyzed C-C Bond Cleavage of Nitriles and Ketones.
In a 25mL of sealed tube, IrH5 (Pi -Pr3 )2 (1 , 0.2 mmol), nitriles or ketones (1 mmol), and toluene (0.5 mL) were placed and stirred
for 12 h at 150 °C under argon atmosphere. The yields of products were determined
by NMR using dibenzyl as an internal standard. All the products were confirmed by
1 H NMR, 13 C NMR, and HRMS.
<A NAME="RU15804ST-18">18 </A>
In the case of the reaction of 2-methyl-2- phenylhexane-dinitrile (12 ), the formation of 2-amino-1-cyano-3-methyl-3-phenylcyclopentene (13 ) was observed.19 The cyclization would proceed via nucleophilic addition of alkyliridium intermediate
to the CN triple bond of nitriles (Scheme
[4 ]
). This cyclic product unequivocally supports the occurrence of α-C-H bond activation
and the formation of intermediate 8 (Scheme
[4 ]
).
Scheme 4
<A NAME="RU15804ST-19">19 </A>
In a 25mL of sealed tube, 2-methyl-2- phenylhexanedinitrile (12 , 200 mg, 1.0 mmol), IrH5 (Pi -Pr3 )2 (1 , 52 mg, 0.1 mmol), and toluene (0.5 mL) were placed and stirred for 24 h at 150 °C
under argon atmosphere. After removal of the solvent, the mixture was purified by
silica gel column chromatography and by Kugelrohr distillation to give 2-amino-1-cyano-3-methyl-3-phenylcyclopentene
(13 , 1:0.8 diastereomer mixture) as a colorless oil (47 mg, 24%). 1 H NMR (270 MHz, CDCl3 ): δ = 1.54 (s, 3 H, -CH
3 ), 1.95-2.15 [m, 2 H, -CH
2 -C(Me)(Ph)-], 2.48-2.53 [m, 2 H, -CH
2 -C(CN)-], 4.25 (br, 2 H, -NH
2 ), 7.22-7.40 (m, 5 H, -C6
H
5 ). 13 C NMR (68 MHz, CDCl3 ): δ = 167.2 (C -NH2 ), 144.1 (-C
6 H5 ), 128.4 (-C
6 H5 ), 126.7 (-C
6 H5 ), 126.2 (-C
6 H5 ), 118.8 (-C N), 74.2 (C -CN), 53.0 (C -CH3 ), 41.5 [-C H2 -C(Me)(Ph)-], 28.1 [-C H2 -C(CN)-], 22.9 (-C H3 ). MS (EI, 70 eV):
m/z (%) = 198, 183, 168, 166, 140, 129, 115, 105, 91, 77.
<A NAME="RU15804ST-20A">20a </A>
Nolan SP.
Hoff CD.
Stoutland PO.
Newman LJ.
Buchanan JM.
Bergman RG.
Yang GK.
Peters KS.
J. Am. Chem. Soc.
1987,
109:
3143
<A NAME="RU15804ST-20B">20b </A>
Simoes JAM.
Beauchamp JL.
Chem. Rev.
1999,
90:
629