Der Nuklearmediziner 2004; 27(4): 315-323
DOI: 10.1055/s-2004-832455
© Georg Thieme Verlag Stuttgart · New York

PET/CT und PET - Einsatz in der pädiatrischen Onkologie

PET/CT and PET - Application in Pediatric OncologyC. Franzius1 , K. Lang1 , D. Wormanns2 , J. Vormoor3 , O. Schober1
  • 1Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Münster
  • 2Institut für klinische Radiologie, Universitätsklinikum Münster
  • 3Klinik und Poliklinik für Kinder- und Jugendmedizin - Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Münster
Further Information

Publication History

Publication Date:
14 February 2005 (online)

Zusammenfassung

PET-CT ist eine neue Technologie mit dem großen Potenzial, die onkologische Bildgebung zu verbessern. Die Einführung in die klinische Routine erfolgte vor etwa 3 Jahren, daher sind die verfügbaren Literaturdaten noch vorläufig. Studien zur PET-CT an pädiatrischen Patienten gibt es bisher nicht. Dennoch kann bereits jetzt angenommen werden, dass die Synthese aus struktureller und metabolischer Information zu einer höheren Genauigkeit beim Staging führt und somit das realistische Potenzial hat, das klinische Management bei einem relevanten Prozentsatz von pädiatrischen Patienten zu ändern. In diesem Artikel werden die Vorteile und speziellen Anforderungen der Anwendung der PET-CT an jungen onkologischen Patienten aufgeführt. Potenzielle klinische Einsatzbereiche der PET-CT in dieser Patientengruppe umfassen Hodgkin- und Non-Hodgkin-Lymphome, Ewingtumore, Osteosarkome, Rhabdomyosarkome und Neuroblastome.

Abstract

PET-CT is a new imaging technology with a high capability to improve oncologic imaging. Introduction into clinical practise started approximately 3 years ago. Consequently, the available literature data are preliminary. There are no studies concerning PET-CT in pediatric patients. Nevertheless, it can already be supposed that the synthesis of structural and metabolic information improves the accuracy of staging and has the realistic potential to change patient management in a relevant percentage rate in pediatric patients. In this article, the advantages and special features of the application of PET-CT in young oncologic patients are pointed out. Potential clinical applications of PET-CT in this patient group include Hodgkin and non-Hodgkin lymphomas, Ewing tumors, osteosarcomas, rhabdomyosarcomas and neuroblastomas.

Literatur

  • 1 Antoch G, Stattaus J, Nemat A, Marnitz S, Beyer T, Kuehl H, Bockisch A, Debatin J, Freudenberg L. Non-small cell lung cancer: dual-modality PET/CT in properative staging.  Radiology. 2003;  229 526-533
  • 2 Bar-Schalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A, Altman H, Keidar Z, Israel O. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management.  J Nucl Med. 2003;  44 1200-1209
  • 3 Fischer S. Kinder in der Nuklearmedizin.  Der Nuklearmediziner. 2002;  25 84-89
  • 4 Franzius C. Positronen-Emissions-Tomographie mit F-18-Fluor-Deoxyglukose (FDG-PET) in der pädiatrischen Onkologie.  Der Nuklearmediziner. 2002;  25 118-121
  • 5 Franzius C, Bielack S, Flege S, Sciuk J, Jürgens H, Schober O. Prognostic significance of F-18-FDG and Tc-99m-Methylene Diphosphonate Uptake in Primary Osteosarcoma.  J Nucl Med. 2002;  43 1012-1017
  • 6 Franzius C, Daldrup-Link H E, Sciuk J, Rummeny E J, Bielack S, Jürgens H, Schober O. FDG-PET for detection of pulmonary metastases from malignant primary bone tumors: comparison with spiral CT.  Ann Oncol. 2001;  12 479-486
  • 7 Franzius C, Daldrup-Link H E, Wagner-Bohn A, Sciuk J, Heindel W L, Jürgens H, Schober O. FDG PET for detection of recurrences from malignant primary bone tumors: Comparison with conventional imaging.  Ann Oncol. 2002;  13 157-160
  • 8 Franzius C, Riemann B, Vormoor J, Kopka K, Wagner K, Rath B, Jürgens H, Schober O. Metastatic neuroblastoma demonstrated by whole-body PET-CT using carbon-11 labeled hydroxyephedrine (HED). Nuklearmedizin, in press
  • 9 Franzius C, Sciuk J. Positronenemissionstomographie mit F-18-Fluor-Desoxyglukose (FDG-PET) im Kindes- und Jugendalter.  Der Nuklearmediziner. 2000;  23 287-295
  • 10 Franzius C, Sciuk J, Brinkschmidt C, Jürgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18-FDG-PET compared with histologically assessed tumor necrosis.  Clin Nucl Med. 2000;  25 874-881
  • 11 Franzius C, Sciuk J, Daldrup-Link H E, Jürgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy.  Eur J Nucl Med. 2000;  27 1305-1311
  • 12 Hahn K, Fischer S. Strahlenexposition und Strahlenschutz bei nuklearmedizinischen Untersuchungen in der Pädiatrie.  Der Nuklearmediziner. 2002;  25 90-100
  • 13 Hawkins D S, Rajendran J G, Conrad E U, Bruckner J D, Eary J F. Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-Fluorodeoxy-D-Glucose Positron Emission Tomography.  Cancer. 2002;  94 3277-3284
  • 14 Herrmann S, Wormanns D, Pixberg M, Hunold A, Heindel W L, Jürgens H, Schober O, Franzius C. Staging in childhood lymphoma: differences between FDG-PET and CT. Nuklearmedizin, in press
  • 15 Hoegerle S, Nitzsche E, Altehoefer C, Ghanam N, Manz T, Brink I, Reincke M, Moser E, Neumann H P. Pheochromocytomas: detection with F-18-DOPA whole-body PET - initial results.  Radiology. 2002;  222 507-512
  • 16 Kaste S. Issues specific to implementing PET-CT for pediatric oncology: what have we learned along the way.  Pediatric Radiology. 2004;  34 205-213
  • 17 Körholz D, Clavies A, Hasenclever D, Kluge R, Hirsch W, Kamprad F, Dörfel W, Wickmann L, Papsdorf K, Dieckmann K, Kahn T, Mauz-Körholz C, Danneberg C, Potter R, Brostanu O, Schellong G, Sabri O. The concept of the GPOH-HD 2003 therapy study for pediatric Hodgkin's disease: evolution in the tradition of DAL/GPOH studies.  Klin Pädiatr. 2004;  216 150-156
  • 18 Kushner B H, Yeung H WD, Larson S M, Kramer K, Chueng N-K V. Extending Positron Emission Tomography Scan Utility to High-Risk Neuroblastoma: Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography as Sole Imaging Modality in Follow-Up of Patients.  J Cin Oncol. 2001;  19 3397-3405
  • 19 Lardinois D, Weder W, Hany T, Kamel E, Korom S, Seifert B, Schulthess G von, Steinert H. Staging of non-small-cell lung cancer with integrated positron-emission-tomography and computed tomography.  N Engl J Med. 2003;  348 2500-2507
  • 20 Messa C, Bettinardi V, Picchio M, Pelosi E, Landoni C, Gianolli L, Gilardi M C, Fazio F. PET/CT in diagnostic oncology.  Q J Nucl Med. 2004;  48 86-75
  • 21 Montravers F, McNamara D, Landman-Parker J, Grahek D, Kerrou K, Younsi N, Wioland M, Leverger G, Talbot J N. [F-18]FDG in childhood lymphoma: clinical utility and impact on management.  Eur J Nucl Med Mol Imaging. 2002;  29 1155-1165
  • 22 Nair N, Ali G, Green A A, Lamonica G, Alibazoglu H, Alibazoglu B, Hollinger E F, Ahmed K. Response of osteosarcoma to chemotherapy. Evaluation with F-18 FDG-PET scans.  Clin Positron Imaging. 2000;  3 79-83
  • 23 Schöder H, Larson S M, Yeung H WD. PET/CT in Oncology: Integration into clinical management of lymphoma, melanoma, and gastrointestinal malignancies.  J Nucl Med. 2004;  45 72S-81S
  • 24 Schröer S, Franzius C. Vorschläge für standardisierte Untersuchungsprotokolle (schriftliche Anweisungen): F-18-FDG-PET in der Onkologie.  Der Nuklearmediziner. 2004;  27 54-60
  • 25 Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar M R, Keppler P, Kotzerke J, Guhlmann A, Delling G, Reske S N. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG-PET.  J Nucl Med. 1999;  40 1637-1643
  • 26 Shulkin B L, Wieland D M, Baro M E, Ungar D R, Mitchell D S, Dole M G, Rawwas J B, Castle V P, Sisson J C, Hutchinson R J. PET Hydroxyephedrine Imaging of Neuroblastoma.  J Nucl Med. 1996;  37 16-21
  • 27 Weckesser M, Könemann S, Brinkmann M, Willich N, Schober O. PET-CT in der Strahlentherapie.  Der Radiologe. 2004;  44 1096-1104
  • 28 Wickmann L, Lüders H, Dörffel W. FDG-PET-findings in children and adolescents with Hodgkin's disease: retrospektive evaluation of the correlation to other imaging procedures in initial staging and to the predictive value of follow-up examinations.  Klin Pädiatr. 2003;  215 146-150
  • 29 Wildberger J E, Mahnken A H, Schmitz-Rode T, Flohr T, Stargardt A, Haage P, Schaller S, Gunther R W. Individually adapted examination protocols for reduction of radiation exposure in chest CT.  Invest Radiol. 2001;  10 604-611
  • 30 Wormanns D, Diederich S, Lenzen H, LAnge P, Link T M, Ludwig K, Papke K, Haedorn C, Heindel W. Abdominal spiral CT in children: wich radiation exposure is required?.  Eur Radiol. 2001;  11 2262-2266
  • 31 Wu T-H, Huang Y-H, Lee J JS, Wang S-Y, Wang S-C, Su C-T, Chen L-K, Chu T-C. Radiation exposure during transmission measurements: comparison between CT- and germanium-based techniques with a current PET scanner.  Eur J Nucl Med. 2004;  31 38-43

PD Dr. Christiane Franzius

Klinik und Poliklinik für Nuklearmedizin · Universitätsklinikum Münster

Albert-Schweitzer-Str. 33

48129 Münster

Phone: 02 51/8 34 73 62

Fax: 02 51/8 34 73 83

Email: franziu@uni-muenster.de