Planta Med 2004; 70(10): 1001-1003
DOI: 10.1055/s-2004-832628
Letter
© Georg Thieme Verlag KG Stuttgart · New York

Cyclopentanoid Cyanohydrin Glucosides and Amides of Lindackeria dentata

Jerzy W. Jaroszewski1 , Patrick Ekpe2 , Matthias Witt3
  • 1Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Copenhagen, Denmark
  • 2Botany Department, University of Ghana, Legon, Ghana
  • 3Bruker Daltonik GmbH, Bremen, Germany
Part 27 in the series ”Natural Cyclopentanoid Cyanohydrin Glycosides”
Further Information

Publication History

Received: April 28, 2004

Accepted: July 15, 2004

Publication Date:
18 October 2004 (online)

Abstract

A mixture of cyanogenic glucosides epivolkenin and taraktophyllin, 1,4-dihydroxy-2-cyclopentenecarboxamide, and uridine were isolated from leaves of Lindackeria dentata (Flacourtiaceae). Another cyclopentanoid amide, (1R,4S,5R)-1,4,5-trihydroxy-2-cyclopentenecarboxamide, was synthesized in two steps from gynocardin, and shown to have the same relative configuration as a partially identified amide previously isolated from L. dentata bark.

References

  • 1 Nahrstedt A. The biology of the cyanogenic glycosides: new developments. In: Mengel K, Pilbeam DJ, editors Nitrogen metabolism of plants. Oxford; Clarendon Press 1992: pp 249-69
  • 2 Lechtenberg M, Nahrstedt A. Cyanogenic glycosides. In: Ikan R, editor. Naturally occurring glycosides. Chichester; John Wiley & Sons 1999: pp 147-91
  • 3 Jaroszewski J W, Olafsdottir E S, Wellendorph P, Christensen J, Franzyk H, Somanadhan B, Budnik B, Jørgensen L B, Clausen V. Cyanohydrin glycosides of Passiflora: distribution pattern, a saturated cyclopentene derivative from P. guatemalensis, and formation of pseudocyanogenic α-hydroxyamides as isolation artefacts.  Phytochemistry. 2002;  59 501-11
  • 4 Clausen V, Frydenvang K, Koopmann R, Jørgensen L B, Abbiw D K, Ekpe P, Jaroszewski J W. Plant analysis by butterflies: occurrence of cyclopentenylglycines in Passifloraceae, Flacourtiaceae, and Turneraceae and discovery of a novel nonproteinogenic amino acid 2-(3′-cyclopentenyl)glycine in Rinorea .  J Nat Prod. 2002;  65 542-7
  • 5 Jaroszewski J W, Andersen J V, Billeskov I. Plants as a source of chiral cyclopentenes: taraktophyllin and epivolkenin, new cyclopentenoid cyanohydrin glucosides from Flacourtiaceae.  Tetrahedron. 1987;  43 2349-54
  • 6 Jaroszewski J W, Olafsdottir E S. Monohydroxylated cyclopentenone cyanohydrin glucosides of Flacourtiaceae.  Phytochemistry. 1987;  26 3348-9
  • 7 Jaroszewski J W, Bruun D, Clausen V, Cornett C. Novel cyclopentenoid cyanohydrin rhamnoglucosides from Flacourtiaceae.  Planta Med. 1988;  54 333-7
  • 8 Olafsdottir E S, Sørensen A M, Cornett C, Jaroszewski J W. Structure determination of natural epoxycyclopentanes by X-ray crystallography and NMR spectroscopy.  J Org Chem. 1991;  56 2650-5
  • 9 Sang S, Kikuzaki H, Lapsley K, Rosen R T, Nakatani N, Ho C T. Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch).  J Agric Food Chem. 2002;  50 709-12
  • 10 Jaroszewski J W, Olafsdottir E S, Cornett C, Schaumburg K. Cyanogenesis of Adenia volkensii Harms and Tetrapathaea tetrandra Cheeseman (Passifloraceae) revisited: tetraphyllin B and volkenin. Optical rotatory power of cyclopentenoid cyanohydrin glucosides.  Acta Chem Scand B. 1987;  41 410-21
  • 11 Nahrstedt A, Rockenbach J. Occurrence of the cyanogenic glucoside prunasin and its corresponding mandelic acid amide glucoside in Olinia species (Oliniaceae).  Phytochemistry. 1993;  34 433-6
  • 12 Gibbons S, Gray A I, Waterman P G. A cyclopentene amide from Lindackeria dentata .  Phytochemistry. 1998;  49 2395-6
  • 13 Jaroszewski J W, Olafsdottir E S. Natural glycosides of cyclopentenone cyanohydrin: revised structure of so-called epitetraphyllin B.  Tetrahedron Lett. 1986;  27 5297-300
  • 14 Brimer L, Christensen S B, Mølgaard P, Nartey F. Determination of cyanogenic compounds by thin-layer chromatography. 1. A densitometric method for quantification of cyanogenic glycosides, employing enzyme preparations (β-glucuronidase) from Helix pomatia and picrate-impregnated ion-exchange sheets.  J Agric Food Chem. 1983;  31 789-93

Prof. Jerzy W. Jaroszewski

Department of Medicinal Chemistry

The Danish University of Pharmaceutical Sciences

Universitetsparken 2

2100 Copenhagen

Denmark

Fax: +45 3530 6040.

Email: jj@dfuni.dk