Planta Med 2004; 70(11): 1058-1063
DOI: 10.1055/s-2004-832647
Original Paper
Biochemistry and Molecular Biology
© Georg Thieme Verlag KG Stuttgart · New York

Effect of 13-epi-Sclareol on the Bacterial Respiratory Chain

Lorena Tapia1 , Janet Torres1 , Leonora Mendoza2 , Alejandro Urzúa3 , Jorge Ferreira4 , Mario Pavani4 , Marcela Wilkens1
  • 1Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
  • 2Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
  • 3Laboratorio de Química Ecológica, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
  • 4Departamento de Bioquímica y Medicina Experimental, Facultad de Medicina, Universidad de Chile, Chile
Weitere Informationen

Publikationsverlauf

Received: February 6, 2004

Accepted: July 10, 2004

Publikationsdatum:
18. November 2004 (online)

Abstract

13-epi-Sclareol is a labdane-type diterpene isolated from the resinous exudates of the medicinal plant species Pseudognaphalium cheiranthifolium (Lam.) Hilliard et Burtt. and P. heterotrichium (Phil.) A. Anderb. This compound has antibacterial activity only against Gram-positive bacteria, showing a bactericidal and lytic action. The interaction of 13-epi-sclareol with the bacterial respiratory chain was analyzed. The compound inhibited oxygen consumption of intact Gram-positive cells, but not with Gram-negative bacteria. The compound inhibited NADH oxidase and cytochrome c reductase activities, while coenzyme Q reductase and the cytochrome c oxidase activities were not affected. These results suggest that the target site of 13-epi-sclareol is located between coenzyme Q and cytochrome c. Using cytoplasmic membrane fractions, the results of the analysis of the enzyme activities associated with the respiratory chain complexes were the same for both Gram-positive and Gram-negative bacteria, indicating that the compound has no access to the cytoplasmic membrane of intact Gram-negative bacteria. Thus, the Gram-negative envelope may act as a physical barrier that prevents the access of this compound to the site of action.

References

  • 1 Ghisalberti E L. The biological activity of naturally occurring kaurane diterpenes.  Fitoterapia. 1997;  68 303-25
  • 2 Mendoza L, Wilkens M, Urzúa A. Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae).  J Ethnopharmacol. 1997;  58 85-8
  • 3 Urzúa A, Torres R, Mendoza L, Delle Monache F. Antibacterial new clerodane diterpenes from the surface of Haplopappus foliosus .  Planta Med. 2003;  69 675-7
  • 4 Urzúa A, Caroli M, Vásquez L, Mendoza L, Wilkens M, Tojo E. Antimicrobial study of the resinous exudate and of diterpenoids isolates from Eupatorium salvia (Asteraceae).  J Ethnopharmacol. 1998;  62 251-4
  • 5 Mendoza L, Tapia L, Wilkens M, Urzúa A. Antibacterial activity of 13-epi-sclareol, a labdane type diterpene isolated from Pseudognaphalium heterotrichium and P. cheiranthifolium (Asteraceae).  Bol Soc Chil Quím. 2002;  47 91-8
  • 6 Reyes Mateo C, Prieto M, Micol V, Shapiro S, Villalain J. A fluorescence study of the interaction and location of (+)-totarol, a diterpenoid bioactive molecule, in model membranes.  Biochim Biophys Act. 2000;  1509 167-75
  • 7 Micol V, Reyes Mateo C, Shapiro S, Aranda F J., Villalain J. Effects of (+)-totarol, a diterpenoid antibacterial agent, on phospholipid model membranes.  Biochim Biophys Act. 2001;  1511 281-90
  • 8 Wilkens M, Alarcon C, Urzúa A, Mendoza L. Characterization of the bactericidal activity of the natural diterpene kaurenoic acid.  Planta Med. 2002;  68 452-4
  • 9 Abramov A Y, Zamaraeva M V, Hagelgans A I, Azimov R R, Krasilnikov O V. Influence of plant terpenoids on the permeability of mitochondria and lipid bilayers.  Biochim Biophys Act. 2001;  1512 98-110
  • 10 Haraguchi H, Oike S, Muroi H, Kubo I. Mode of action of totarol, a diterpene from Podocarpus nagi .  Planta Med. 1996;  62 122-5
  • 11 Haraguchi H, Abo T, Hashimoto K, Yagi A. Action-mode of antimicrobial altersolanol A in Pseudomonas aeruginosa .  Biosci Biotech Biochem. 1992;  56 1221-4
  • 12 Morello A, Pavani M, Garbarino J A, Chamy M C, Frey C, Mancilla J. et al . Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites.  Comp Biochem Physiol. 1995;  112C 119-28
  • 13 Marumo H, Kitaura K, Morimoto M, Tanaka H, Omura S. The mode of action of nanaomycin A in Gram-positive bacteria.  J Antibiotics. 1980;  33 885-90
  • 14 Imai K, Asano A, Sato R. Oxidative phosphorylation in Micrococcus denitrificans. I. Preparation and properties of phosphorylating membrane fragments.  Biochim Biophys Acta. 1967;  143 462-76
  • 15 Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata .  Phytochemistry. 1998;  48 125-9
  • 16 Ulrich J T, Mathre D E. Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae .  J Bacteriol. 1972;  110 628-32
  • 17 Cheah K S. Fuscin, an inhibitor of respiration and oxidative phosphorylation in ox-neck muscle mitochondria.  Biochim Biophys Act. 1972;  275 1-9
  • 18 Bradford M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dry binding.  Anal Biochem. 1976;  72 248-54
  • 19 Nikaido H. Microdermatology: cell surface in the interaction of microbes with the external world.  J Bacteriol. 1999;  181 4-8
  • 20 Anraku Y. Bacterial electron transport chains.  Ann Rev Biochem. 1988;  57 101-32

Marcela Wilkens

Facultad de Quimica y Biologia

Universidad de Santiago de Chile

Casilla 40 Correo

33 Santiago

Chile

Telefon: +56-2-681-1366

Fax: +56-2-681-2108

eMail: mwilkens@lauca.usach.cl