Subscribe to RSS
DOI: 10.1055/s-2004-832804
Hg(II) Reagent-Controlled Stereoselective Synthesis of 2,5-cis- and 2,5-trans-Polyhydroxylated Pyrrolidines
Publication History
Publication Date:
03 September 2004 (online)
Abstract
Stereoselectivity in the intramolecular amidomercuration reaction of 11, which could form 2,5-cis- and 2,5-trans-polyhydroxylated pyrrolidines, was found to be dependent on the nature of the Hg(II) salts used as well as on the stereochemistry and protection state of the hydroxyl group at the allylic carbon. Thus, the amidomercuration reaction of 11 with Hg(CF3CO2)2 led to the predominant formation of the 2,5-cis-polyhydroxylated pyrrolidine 16, while use of Hg(CF3SO3)2 generated the corresponding 2,5-trans isomer 17. Isomers 16 and 17 were further elaborated to stereoselectively synthesize 2,5-dideoxy 2,5-imino-d-altritol and 2,5-dideoxy 2,5-imino-d-galactitol (for 20 and 21), which are known to be potent d-galactosidase inhibitors.
Key words
carbohydrate - glycosidase inhibitor - polyhydroxylated pyrrolidine - regioselective asymmetric aminohydroxylation reaction - intramolecular amidomercuration reaction
-
1a
Iminosugars as Glycosidase Inhibitors. Nojirimycin and Beyond
Stutz AE. Wiley-VCH; Weinheim Germany: 1999. -
1b
Martin OR. In Carbohydrate Mimics. Concepts and MethodsChapleur Y. Wiley-VCH; Weinheim Germany: 1998. -
1c
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 -
2a
Izquierdo I.Plaza MT.Franco F. Tetrahedron: Asymmetry 2004, 15: 1465 -
2b
Cordona F.Faggi E.Liguori F.Cacciarini M.Goti A. Tetrahedron Lett. 2003, 44: 2315 -
2c
Izquierdo I.Plaza MT.Franco F. Tetrahedron: Asymmetry 2002, 13: 1581 -
2d
Gallos JK.Sarli VC.Stathakis CI.Koftis TV.Nachmia VR.Coutouli-Argyropoulou E. Tetrahedron 2002, 58: 9351 -
2e
Behr J.-B.Erard A.Guillerm G. Eur. J. Org. Chem. 2002, 1256 -
2f
Denmark SE.Cottell JJ. J. Org. Chem. 2001, 66: 4276 -
2g
White JD.Hrnciar P. J. Org. Chem. 2000, 65: 9129 -
2h
Romero A.Wong C.-H. J. Org. Chem. 2000, 65: 8264 -
2i
Yoda H.Katoh H.Takabe K. Tetrahedron Lett. 2000, 41: 7661 -
2j
Pearson WH.Hines JV. J. Org. Chem. 2000, 65: 5785 -
2k
Denmark SE.Hurd AR. J. Org. Chem. 2000, 65: 2875 -
2l
Denmark SE.Herbert B. J. Org. Chem. 2000, 65: 2887 -
3a
Han H.Cho CW.Janda KD. Chem.-Eur. J. 1999, 5: 1565 -
3b
Singh OV.Han H. Tetrahedron Lett. 2003, 44: 2387 -
3c
Singh OV.Han H. Tetrahedron Lett. 2003, 44: 5289 - For a review, see
-
4a
Robin S.Rousseau G. Tetrahedron 1998, 54: 13681 -
4b
Khalaf JF.Datta A. J. Org. Chem. 2004, 69: 387 -
4c
Enierga G.Espiritu M.Perlmutter P.Pham N.Rose M.Sjoberg S.Thienthong N.Wong K. Tetrahedron: Asymmetry 2001, 12: 597 -
4d
Takahata H.Bandoh H.Momose T. Tetrahedron: Asymmetry 1991, 2: 351 -
4e
Takahata H.Banba Y.Tajima M.Momose T. J. Org. Chem. 1991, 56: 240 -
4f
Takahata H.Takehara H.Ohkubo N.Momose T. Tetrahedron: Asymmetry 1990, 1: 561 -
4g
Tamaru Y.Hojo M.Yoshida Z. J. Org. Chem. 1988, 53: 5731 -
4h
Tokuda M.Yamada Y.Suginome H. Chem. Lett. 1988, 17: 1289 -
4i
Kinsman R.Lathbury D.Vernon P.Gallagher T. J. Chem. Soc., Chem. Commun. 1987, 243 -
4j
Harding KE.Marman TH. J. Org. Chem. 1984, 49: 2838 -
4k
Harding KE.Burks SR. J. Org. Chem. 1984, 49: 40 -
4l
Harding KE.Burks SR. J. Org. Chem. 1981, 46: 3920 - 5
Singh S.Chikkanna D.Singh OV.Han H. Synlett 2003, 1279 - 7
Takaku H.Kamaike K.Tsuchiya H. J. Org. Chem. 1984, 49: 51 - 8
Burk MJ.Allen JG. J. Org. Chem. 1997, 62: 7054 -
9a
Mitsunobu O. Synthesis 1981, 1 -
9b
Hughes DL. Org. React. 1992, 42: 335 -
10a
Wang Y.-F.Takaoka Y.Wong C.-H. Angew. Chem., Int. Ed. Engl. 1994, 33: 1242 -
10b
Fechter MH.Stutz AE. Carbohydr. Res. 1999, 319: 55 - 11
Hayes P.Suthers BD.Kitching W. Tetrahedron Lett. 2000, 41: 6175 - 12
Fukuyama T.Laird AA.Hotchkiss LM. Tetrahedron Lett. 1985, 26: 6291
References
The compound I was prepared from the reaction of ethyl 4-bromocrotonate with p-methoxyphenol in the presence of K2CO3 and a catalytic amount of 18-crown-6 in MeCN at r.t. (yield: 80%).
13Compound 14: [α]D +20.0 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.35-7.25 (5 H, m), 6.82-6.75 (4 H, m), 4.77-4.64 (1 H, m), 4.60-4.55 (2 H, m), 4.25 and 3.84 (1 H, br s), 4.20-4.02 (5 H, m), 3.75 (3 H, s), 2.30 and 2.11 (1 H, m,) 1.59 and 1.30 (1 H, t, J = 10.5 Hz), 1.44 and 1.40 (9 H, s). 13C NMR (125 MHz, CDCl3): δ = 154.0, 153.9, 152.8, 137.4, 128.6, 128.2, 127.8, 115.9, 114.6, 81.3, 80.9, 73.4, 71.6, 65.4, 56.7, 55.6, 55.3, 30.3, 28.4, minor peaks due to rotational isomer(s): 81.0, 80.4, 73.7, 71.6, 70.8, 65.4, 64.1, 58.9, 54.6. Compound 16: [α]D +50.0 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.35-7.28 (5 H, m), 6.93 (2 H, d, J = 9.0 Hz), 6.83 (2 H, d, J = 9.0 Hz), 4.71 (1 H, d, J = 11.5 Hz), 4.67 (1 H, d, J = 11.5 Hz), 4.25-4.12 (6 H, m), 3.78-3.70 (1 H, m), 3.77 (3 H, s), 2.25 (1 H, dd, J = 11.5 and 6.0 Hz), 2.17 (1 H, dd, J = 11.5 and 4.5 Hz), 1.48 (9 H, s). 13C NMR (125 MHz, CDCl3): δ = 155.1, 154.5, 151.9, 137.3, 128.5, 128.1, 127.9, 116.2, 114.7, 81.2, 77.1, 72.6, 70.9, 66.7, 60.1, 59.1, 55.7, 34.0, 28.5. Compound 17: [α]D +19.0 (c 1.0, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.40-7.20 (5 H, m), 6.85-6.70 (4 H, m), 4.72 (1 H, d, J = 11.5 Hz), 4.51 (1 H, d, J = 11.5 Hz), 4.50-4.35 (2 H, m), 4.25-4.10 (3 H, m), 4.00 (1 H, br s), 3.71 (3 H, s), 1.91 (1 H, d, J = 12.0 Hz), 1.48 (1 H, d, J = 12.0 Hz), 1.32 (9 H, s). 13C NMR (75 MHz, CDCl3): δ = 154.8, 154.1, 152.0, 137.3, 128.5, 128.0, 127.7, 116.8, 114.6, 81.6, 75.9, 75.8, 71.4, 65.5, 65.4, 58.3, 55.6, 35.0, 28.4.