Abstract
Azole-N -acetonitrile derivatives were utilized as synthons for an ambident carbonyl moiety via a strategy relying upon sequential base-mediated SN Ar substitution of a 2-halo heterocycle, in situ oxidation, and amine displacement. This strategy allows prompt and efficient synthesis of N-containing heteroaryl amides directly from the corresponding halides via a one-pot process.
Key words
azole-N -acetonitrile - carbonyl synthon - heteroaryl amide - acyl anion equivalent
References
1a
Romero DL.
Morge RA.
Biles C.
Berrios-Pena N.
May PD.
Palmer JR.
Johnson PD.
Smith HW.
Busso M.
Tan C.-K.
Voorman RL.
Reusser F.
Althaus IW.
Downey KM.
J. Med. Chem.
1994,
37:
999
1b
Natsugari H.
Ikeura Y.
Kiyota Y.
Ishichi Y.
Ishimaru T.
Saga O.
Shirafuji H.
Tanaka T.
Kamo I.
Doi T.
Otsuka M.
J. Med. Chem.
1995,
38:
3106
1c
Kumar S.
Singh R.
Singh H.
Bioorg. Med. Chem. Lett.
1993,
3:
363
1d
Kawakubo H.
Okazaki K.
Nagatani T.
Takao K.
Hasimoto S.
Sugihara T.
J. Med. Chem.
1990,
33:
3110
1e
Tanaka A.
Sakai H.
Motoyama Y.
Ishikawa T.
Takasugi H.
J. Med. Chem.
1994,
37:
1189
1f
Perry R.
Wilson BD.
J. Org. Chem.
1996,
61:
7482
1g
Ben-David Y.
Portnoy M.
Milstein D.
J. Am. Chem. Soc.
1989,
111:
8742
2a
Kaplan MJ.
Curr. Opin. Investig. Drugs
2001,
2:
222
2b
Adams VR.
Valley AW.
Ann. Pharmacotherapy
1995,
29:
1240
3a
Yang Z.
Zhang Z.
Meanwell NA.
Kadow JF.
Wang T.
Org. Lett.
2002,
4:
1103
3b
Zhang Z.
Yin Z.
Kadow JF.
Meanwell NA.
Wang T.
J. Org. Chem.
2004,
69:
1360
4
Yin Z.
Zhang Z.
Kadow JF.
Meanwell NA.
Wang T.
J. Org. Chem.
2004,
69:
1364
5a
Meyers AI.
Robichaud AJ.
McKennon MJ.
Tetrahedron Lett.
1992,
33:
1181
5b
Ozawa F.
Soyama H.
Yanagihara H.
Aoyama I.
Takino H.
Izawa K.
Yamamoto T.
Yamamoto A.
J. Am. Chem. Soc.
1985,
107:
3235
5c
Brunet JJ.
Sidot C.
Loubinoux B.
Caubere P.
J. Org. Chem.
1979,
44:
2199
5d
Schoenberg A.
Heck RF.
J. Org. Chem.
1974,
39:
3327
6a
Nicolaou KC.
Baran PS.
Angew. Chem. Int. Ed.
2002,
41:
2678
6b
Katrizky AR.
He H.-Y.
Suzuki K.
J. Org. Chem.
2000,
65:
8210
6c
Evans DA.
Borg G.
Scheidt KA.
Angew. Chem. Int. Ed.
2002,
41:
3188
6d
Adam W.
Humpf H.-U.
Korb MN.
Schreier P.
Tetrahedron: Asymmetry
1997,
8:
3555
6e
Kashima C.
Shirahata Y.
Tsukamoto Y.
Heterocycles
1998,
49:
459
6f
Bu X.
Deady LW.
Finlay GJ.
Baguley BC.
Denny WA.
J. Med. Chem.
2001,
44:
2004
6g
Bhat B.
Sanghvi YS.
Tetrahedron Lett.
1997,
38:
8811
6h
Jursic BS.
Synth. Commun.
1993,
23:
361
6i
Katritzky AR.
Levell JR.
Pleynet DPM.
Synthesis
1998,
153
7 This assumption was further confirmed with an addition of excess of EtOH prior to oxidation under the same condition. The formation of 19a (51%) and the ethyl ester (31%) was detected by LC-MS.
8
General Procedure for the Preparation of Heteroaryl Amides: NaHMDS (2.5 mL, 1.0 M in THF, 2.5 mmol) was added into a solution of 2-chloro-benzooxazole (153 mg, 1.0 mmol), and (4,5-dichloro-imidazol-1-yl)-acetonitrile (264 mg, 1.5 mmol) in dry THF (15 mL). After stirring for 10 h at r.t. dimethylamine (1.5 mL, 2 M in THF, 3.0 mmol) and HOOAc (0.84 mL, 32 wt.% in HOAc, 4.0 mmol) were subsequently added and the mixture stirred a further 10 h at r.t. The reaction mixture was quenched with sat. Na2 SO3 solution and neutralized by sat. NaHCO3 solution, the aqueous layer extracted with EtOAc (3 × 20 mL) and the combined organic layer dried over MgSO4 . Concentration in vacuo afforded a residue which was purified by silica gel chromatography to provide benzoxazole-2-carboxylic acid dimethylamide (16g , 165 mg, 87%). 1 H NMR (500 MHz, CDCl3 ): δ = 7.71 (d, 1 H, J = 8.0 Hz), 7.52 (d, 1 H, J = 8.0 Hz), 7.33 (m, 2 H), 3.39 (s, 3 H), 3.10 (s, 3 H). 13 C NMR (125 MHz, CDCl3 ): δ = 157.6, 155.2, 149.9, 140.3, 127.0, 125.2, 121.2, 111.4, 38.8, 36.4. HRMS: m/z [M + H]+ calcd for C10 H11 N2 O2 : 191.0821; found: 191.0824.
9 The reaction and the subsequent work-up should be undertaken with care in a well-ventilated hood due to the possibility of HCN liberation.
10
Johnson JS.
Angew. Chem. Int. Ed.
2004,
43:
1326