References
1a
Scriven EFV.
Pyridines and their Benzo Derivatives: (ii) Reactivity at Ring Atoms, In Comprehensive Heterocyclic Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Pergamon Press Ltd.;
Oxford:
1984.
p.165
1b
Uff BC.
Pyridines and their Benzo Derivatives: (iii) Reactivity of Substituents, In Comprehensive Heterocyclic Chemistry
Vol. 2:
Katritzky AR.
Rees CW.
Pergamon Press Ltd.;
Oxford:
1984.
p.315
2
Farah AE.
Alousi AA.
Life Sci.
1978,
22:
1139
3
Alousi AA.
Canter JM.
Monterano MJ.
Fort DJ.
Ferrari RA.
J. Cardiovasc. Pharmacol.
1983,
5:
792
4a
Fossa P.
Boggia R.
Presti EL.
Dorigo P.
Floreani M.
Farmaco
1997,
52:
523
4b
Mosti L.
Schenone P.
Del Mar Mahiques M.
Dorigo P.
Fracarollo D.
Santostasi G.
D’Amico M.
Falciani M.
Lampa E.
Farmaco
1994,
49:
559
4c
Dorigo P.
Gaion RM.
Belluco P.
Fraccarollo D.
Maragno I.
Bombieri G.
Benetollo F.
Mosti L.
Orsisns F.
J. Med. Chem.
1993,
36:
2475
5a
Abu Shanab FA.
Redhouse AD.
Thompson JB.
Wacefield BJ.
Synthesis
1995,
557
5b
Mosti L.
Schenone P.
Menozzi G.
J. Heterocycl. Chem.
1985,
22:
1503
For related cyclization reaction of 3-formylchromones, see:
6a
Jones WD.
Albrecht WL.
J. Org. Chem.
1976,
41:
706
6b The cyclization of 3-formylchromones with amidines and 5-aminopyrazole afforded 5-(2-hydroxybenzoyl)-pyrimidines. See: Löwe W.
Synthesis
1976,
274
6c See also: Petersen U.
Heitzer H.
Liebigs Ann. Chem.
1976,
1663
6d See further: Quiroga J.
Mejia D.
Insuasty B.
Abonita R.
Nogueras M.
Sanches A.
Cobo J.
Low JN.
J. Heterocycl. Chem.
2002,
35:
51
6e The cyclization of 3-formylchromones with aminohetero-cycles afforded fused β-(2-hydroxybenzoyl)pyridines. See: Haas G.
Stanton JL.
von Srerecher A.
Wenk P.
J. Heterocycl. Chem.
1981,
18:
607
6f With hydrazines: Eiden F.
Haverland H.
Arch. Pharm. (Weinheim, Ger.)
1968,
301:
819
6g See also: Ghosh CK.
Mukhopadhyay KK.
J. Indian Chem. Soc.
1978,
55:
386
6h With NH2OH·HCl: Hsung RP.
Zificsak CA.
Wei L.-L.
Zehnder LP.
Park F.
Kim M.
Tran TT.
J. Org. Chem.
1999,
64:
8736
6i With o-phenylenediamine: Ghosh CK.
Khan S.
Synthesis
1980,
701
6j For conversion into pyrroles and thiofenes: Fitton AO.
Frost JR.
Suschitzky H.
Houghton PG.
Synthesis
1977,
133
6k For conversation into 4-(2′-hydroxybenzoyl)salicylic esters see: Langer P.
Holtz E.
Synlett
2003,
402
7a
Nohara A.
Ishiguro T.
Sanno Y.
Tetrahedron Lett.
1974,
1183
7b
Hishmat OH.
El-Naem ShI.
Magd-El-Din AA.
Fawzy NM.
Abd El.-AalAS.
Egypt. J. Chem.
2000,
43:
87
For using Me3SiCl as condensation agent see:
8a
Ryabykhin SV.
Plaskon AS.
Tverdokhlebov AV.
Tolmachev AA.
Synth. Commun.
2004,
34:
1483
8b
Heaney H.
Papageorgeogu G.
Wilkins RF.
Tetrahedron
1997,
53:
2941
8c For using Me3SiI as condensation agent see: Sabitha G.
Reddy GSKK.
Reddy KB.
Yadav JS.
Synthesis
2004,
263
8d
Sabitha G.
Reddy GSKK.
Reddy CS.
Yadav JS.
Synlett
2003,
858
8e
Sabitha G.
Reddy GSKK.
Reddy CS.
Yadav JS.
Tetrahedron Lett.
2003,
44:
4129
9
General Procedure: Amide 2-5 or 12 (2 mmol) and appropriate chromone 1 (2 mmol) were placed in a 10 mL flask and dissolved in DMF (5 mL). Chlorotrimethylsilane (10 mmol) was added dropwise to the solution. The flask was thoroughly sealed with a rubber stopper and heated on a water-bath for 10 h. After cooling the flask was opened (Caution! Excessive pressure inside!) and the reaction mixture was poured into H2O (25 mL). The precipitate formed was filtered and washed with small amount of i-PrOH and than with MeOH. Recrystallization from an appropriate solvent yielded targeted compounds.
10 Typical 1H MNR data (Varian Mercury-400 spectrometer) of pyridones obtained: Compound 6a: 1H NMR (400 MHz, DMSO-d
6): δ = 6.91-6.99 (2 H, m, CH), 7.34-7.41 (2 H, m, CH), 8.05 (1 H, d, 4
J
HH = 2.8 Hz, 4-HPy), 8.31 (1 H, d, 4
J
HH = 2.8 Hz, 6-HPy), 10.28 (1 H, s, NH), 13.11 (1 H, br s, OH). Compound 7bb: 1H NMR (400 MHz, DMSO-d
6): δ = 1.42 [6 H, d, 3
J
HH = 7.6 Hz, (CH3)2CH], 2.30 (3 H, s, CH3), 5.09 [1 H, hep, 3
J
HH = 7.6 Hz, (CH3)2CH], 6.86 (1 H, d, 3
J
HH = 8.4 Hz, CH), 7.16-7.20 (2 H, m, CH), 8.19 (1 H, d, 4
J
HH = 2.4 Hz, 4-HPy), 8.35 (1 H, d, 4
J
HH = 2.4 Hz, 6-HPy), 10.08 (1 H, s, OH). Compound 7ef: 1H NMR (400 MHz, DMSO-d
6): δ = 3.77 (3 H, s, CH3), 6.90-6.99 (3 H, m, CH), 7.50-7.60 (5 H, m, CH), 8.27 (1 H, d, 4
J
HH = 2.4 Hz, 4-HPy), 8.42 (1 H, d, 4
J
HH = 2.4 Hz, 6-HPy), 9.89 (1 H, s, OH). Compound 8ba: 1H NMR (400 MHz, DMSO-d
6): δ = 2.28 (3 H, s, CH3), 4.52 (2 H, d, 3
J
HH = 5.6 Hz, CH2), 5.32 (2 H, s, CH2), 6.87 (1 H, d, 3
J
HH = 8.4 Hz, CH), 7.15 (1 H, s, CH), 7.19-7.21 (2 H, m, CH), 7.25-7.38 (7 H, m, CH), 7.39 (2 H, d, 3
J
HH = 7.6 Hz, CH), 8.66 (1 H, 4
J
HH = 2.0 Hz, 4-HPy), 8.72 (1 H, d, 4
J
HH = 2.0 Hz, 6-HPy), 9.80 (1 H, t, 4
J
HH = 5.6 Hz, 6-HPy), 10.18 (1 H, s, OH). Compound 9ea: 1H NMR (400 MHz, DMSO-d
6): δ = 2.59 (3 H, s, COCH3), 3.74 (3 H, s, OCH3), 6.84 (1 H, d, 4
J
HH = 2.7 Hz, CH), 6.89 (1 H, d, 3
J
HH = 9.0 Hz, CH), 6.96 (1 H, dd, 3
J
HH = 9.0 Hz, 4
J
HH = 2.7 Hz, CH), 8.00 (1 H, d, 4
J
HH = 3.0 Hz, 4-HPy), 8.39 (1 H, d, 4
J
HH = 3.0 Hz, 6-HPy), 9.76 (1 H, s, OH), 12.55 (1 H, br s, NH). Compound 9eb: 1H NMR (400 MHz, DMSO-d
6): δ = 2.57 (3 H, s, COCH3), 3.63 (3 H, s, NCH3), 3.74 (3 H, s, OCH3), 6.84 (1 H, d, 4
J
HH = 2.7 Hz, CH), 6.89 (1 H, d, 3
J
HH = 9.0 Hz, CH), 6.96 (1 H, dd, 3
J
HH = 9.0 Hz, 4
J
HH = 2.7 Hz, CH), 8.29 (1 H, d, 4
J
HH = 3.0 Hz, 4-HPy), 8.56 (1 H, d, 4
J
HH = 3.0 Hz, 6-HPy), 9.75 (1 H, s, OH).
11 Typical 13C MNR data (Varian Mercury-400 spectrometer) of pyridones obtained: Compound 7bb: 13C NMR (100 MHz, DMSO-d
6): δ = 20.4 [(CH3)2CH], 21.3 (CH3), 50.3 [(CH3)2CH], 102.7 (3-CPy), 116.4 (CN), 117.3 (5-CPy), 117.4 (CH), 124.2 (Cq), 128.8 (CH), 131.1 (CH), 134.9 (Cq), 146.2 (4-CHPy), 147.2 (6-CHPy), 154.3 (2-CPy), 159.5 (Cq), 190.7 (C=O). Compound 7ef: 13C NMR (100 MHz, DMSO-d
6): δ = 56.1 (CH3O), 104.3 (3-CPy), 114.1 (5-CPy), 116.1 (CN), 117.3 (CH), 118.5 (CH), 120.8 (CH), 124.6 (Cq), 127.2 (CH), 129.9 (CH), 130.0 (CH), 139.8 (Cq), 148.3 (4-CHPy), 150.1 (6-CHPy), 150.2 (2-CPy), 152.8 (Cq), 159.5 (Cq), 190.1 (C=O). Compound 8ba: 13C NMR (100 MHz, DMSO-d
6): δ = 20.4 (CH3), 43.1 (CH2), 53.5 (CH2), 117.1 (3-CPy), 118.2 (5-CPy), 119.5 (CH), 124.9 (CH), 127.5 (CH), 128.0 (CH), 128.4 (CH), 128.5 (Cq), 128.6 (CH), 129.0 (CH), 129.3 (CH), 130.6 (CH), 134.3 (Cq), 136.5 (Cq), 139.5 (Cq), 143.9 (4-CHPy), 148.9 (6-CHPy), 154.1 (2-CPy), 161.9 (Cq), 162.9 (CONH), 192.1 (C=O). Compound 9ea: 13C NMR (100 MHz, DMSO-d
6): δ = 31.1 (COCH3), 56.1 (CH3O), 114.1 (CH), 116.8 (5-CPy), 118.1 (CH), 119.6 (Cq), 125.7 (CH), 126.3 (3-CPy), 142.9 (4-CHPy), 146.9 (6-CHPy), 149.9 (Cq), 152.6 (2-CPy), 161.5 (Cq), 191.2 (COAr), 196.7 (COCH3). Compound 9eb: 13C NMR (100 MHz, DMSO-d
6): δ = 31.2 (COCH3), 38.7 (NCH3), 56.1 (CH3O), 114.1 (CH), 116.5 (5-CPy), 118.2 (CH), 119.8 (Cq), 124.8 (CH), 125.5 (3-CPy), 142.6 (4-CHPy), 149.8 (Cq), 150.2 (6-CHPy), 152.6 (2-CPy), 161.5 (Cq), 191.5 (COAr), 196.9 (COCH3).
12 Typical IR data (Nexus-470 spectrometer) of pyridones obtained: Compound 7bb: IR (KBr): ν = 3400-2700 (br, OH), 3068, 2985, 2932, 2226 (C≡N), 1671 (C=O), 1654 (C=OPy), 1630, 1577, 1532, 1482 cm-1. Compound 7ef: IR (KBr): ν = 3470-3150 (br, OH), 2231 (C≡N), 1677 (C=O), 1660 (C=OPy), 1539, 1508, 1417 cm-1. Compound 8ba: IR (KBr): ν = 3600-3100 (br, OH), 3288 (NH), 3056, 3023, 2952, 1675 (C=O), 1664 (sh, C=OPy), 1632 (CONHCH2Ph), 1603, 1528 cm-1. Compound 9ea: IR (KBr): ν = 3600-3200 (br, OH, NH), 3056, 2917, 2835, 1685 (COMe), 1665 (C=OPh), 1637, 1593, 1485, 1218 cm-1. Compound 9eb: 3500-3100 (br, OH), 3078, 2960, 1677 (COMe), 1646 (C=OPy), 1538, 1508, 1413 cm-1.
13 Typical MS data (MX-1321 instrument) of pyridones obtained: Compound 6a: MS (EI, 70 eV): m/z (%) = 240 (39) [M+], 147 (19), 121 (86), 120 (100), 92 (45), 65 (54), 39 (43). Compound 7ef: MS (EI, 70 eV): m/z (%) = 346 (30) [M+], 254 (11), 150 (100). Compound 8ba: MS (EI, 70 eV): m/z (%) = 452 (19) [M+], 106 (100), 91 (54). Compound 9ea: MS (EI, 70 eV): m/z (%) = 287 (76) [M+], 272 (10), 150 (100), 135 (21), 43 (24).Compound 9eb: MS (EI, 70 eV): m/z (%) = 301 (64) [M+], 286 (17), 150 (100), 135 (12).
14 For related interactions of enolates with nitrile groups affording 2-pyridone ring see: Bondavalli F.
Bruno O.
Lo Presty E.
Menozzy G.
Mosti L.
Synthesis
1999,
1169