Zusammenfassung
Myotone Dystrophien (DM) sind die häufigsten dominant vererbten neuromuskulären Erkrankungen im Erwachsenenalter. Multisystemische Symptome betreffen Skelettmuskulatur, Gehirn, Auge, Herz und Endokrinum. Ätiologisch sind zwei genetische Loci mit einem DM-Phänotyp gekoppelt: der klassische Phänotyp (Curschmann-Steinert, DM1) ist Chromosom 19 zugeordnet und der Typ 2 (PROMM, Ricker disease, DM2) Chromosom 3. Als kausale Mutation wurde 1992 für DM1 ein expandiertes CTG repeat in der nicht translatierten 3'-Region des Dystrophia Myotonica-Protein-Kinase-Gen (DMPK), und 2001 für DM2 ein expandiertes CCTG repeat in Intron 1 des Zinkfinger-9-Gens (ZNF9) entdeckt. Eine 3. multisystemische Form (DM3?) mit einer frontotemporalen Demenz koppelt auf Chromosom 15. Pathogenetisch liegt bei den Manifestationsformen eine Ansammlung von CUG-/CCUG-Polyribonukleotiden und deren Bindungsproteinen im Zellkern und Zytoplasma vor, die die normale Prozessierung von RNA stören (gain of function) und aberrantes Spleißen von Prä-mRNAs auslösen, sodass u. a. gewebsspezifische, veränderte Proteinisoformen entstehen. Zusätzlich scheint eine Störung von Transkriptionsfaktoren vorzuliegen. Diese Übersicht setzt die multisystemischen Symptome der Erkrankungen in Bezug zu neuen Aspekten der molekularen RNA-Pathogenese.
Abstract
The multisystemic myotonic dystrophies encompass at least two clinical and molecular distinct forms, the classic Steinert's disease (DM1) and the new type (Ricker's disease, DM2) so far. Recently, a potential third form (DM3?) was described. In 1992, the mutation causing DM1 was identified as a CTG repeat in the DMPK Gene on Chromosome 19q, in 2001 the mutation causing DM2 was identified as a CCTG repeat in the ZNF-9 gene on chromosome 3q. Since the molecular mechanism seems to be based on a gain-of-function RNA mechanism, some of the multisystemic features could be drawn back to alternative and aberrant splicing of tissue specific genes, such as chloride channel, while others are still uncharacterised. This review focuses on the multisystemic clinical features and their new molecular pathogenesis.
Literatur
1
Steinert H.
Myopathologische Beiträge 1. Über das klinische und anatomische Bild des Muskelschwunds der Myotoniker.
Dtsch Z Nervenheilkd.
1909;
37
58-104
2
Batten F E, Gibb H P.
Myotonia atrophica.
Brain.
1909;
32
187-205
3
Curschmann H.
Über familiäre atrophische Myotonie.
Dtsch Z Nervenheilkd.
1912;
45
161-202
4 Curschmann H. Myotonische Dystrophie (atrophische Myotonie). In: Bumke, Forster (Hrsg) Handbuch der Neurologie. Berlin; Springer Verlag 1936: 465-485
5 Harper P S. Myotonic Dystrophy, Third Edition. London; W. B. Sauders 2001
6
Brook J D, McCurrach M E, Harley H G. et al .
Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member.
Cell.
1992;
68
799-808
7
Mahadevan M, Tsilfidis C, Sabourin L. et al .
Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene.
Science.
1992;
255
1253-1255
8
Ricker K, Koch M C, Lehmann-Horn F. et al .
Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts.
Neurology.
1994;
44
1448-1452
9
Ricker K, Koch M C, Lehmann-Horn F. et al .
Proximal myotonic myopathy. Clinical features of a multisystem disorder similar to myotonic dystrophy.
Arch Neurol.
1995;
52
25-31
10
Thornton C A, Griggs R C, Moxley 3rd
R T.
Myotonic dystrophy with no trinucleotide repeat expansion.
Ann Neurol.
1994;
35
269-272
11
Ranum L P, Rasmussen P F, Benzow K A. et al .
Genetic mapping of a second myotonic dystrophy locus.
Nat Genet.
1998;
19
196-198
12
Liquori C L, Ricker K, Moseley M L. et al .
Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9.
Science.
2001;
293
864-867
13
Ranum L PW, Day J W.
Myotonic dystrophy: RNA pathogenesis comes into focus.
Am J Hum Genet.
2004;
74
793-804
14
Day J W, Ranum L P.
RNA pathogenesis of the myotonic dystrophies.
Neuromuscul Disord.
2005;
15
5-16
15
Day J W, Ricker K, Jacobson J F. et al .
Myotonic dystrophy type 2.
Neurology.
2003;
60
657-664
16
Bachinski L L, Udd B, Meola G. et al .
Confirmation of DM2 (CCTG)n expansion mutation in PROMM/PDM patients of different European origins: a single shared haplotype indicates ancestral founder effects.
Am J Hum Genet.
2003;
73
835-848
17
Liquori C L, Ikeda Y, Weatherspoon M. et al .
Myotonic Dystrophy Type 2: Human founder haplotype and evolutionary conservation of the repeat tract.
Am J Hum Genet.
2003;
73
849-862
18
Ber I Le, Martinez M, Campion D. et al .
A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM2 locus to chromosome 15q21 - 24.
Brain.
2004;
127
1979-1992
19
Fardaei M, Rogers M T, Thorpe H M. et al .
Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells.
Hum Mol Genet.
2002;
11
805-814
20
Ho T H, Charlet-B N, Poulos M G. et al .
Muscleblind proteins regulate alternative splicing.
EMBO.
2004;
23
3103-3112
21
Mankodi A, Urbinati C R, Yuan Q P. et al .
Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2.
Hum Mol Genet.
2001;
10
2165-2170
22
Mankodi A, Teng-Umnuay P, Krym M. et al .
Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2.
Ann Neurol.
2003;
54
760-768
23
Miller J W, Urbinatii C R, Teng-Umnuay P. et al .
Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy.
EMBO.
2000;
17
44339-44448
24
Wöhrle D, Steinbach P.
Myotone Dystrophie. Pathologischer „gain of function” auf RNA-Ebene.
Medgen.
2003;
15
80-85
25
Black D L.
Mechanisms of alternative pre-messenger RNA splicing.
Ann Rev Biochem.
2003;
72
291-336
26
Herbert A.
The four Rs of RNA-directed evolution.
Nat Genet.
2004;
36
19-25
27
Ebralidze A, Wang Y, Petkova V. et al .
RNA leaching of transcription factors disrupts transcription in myotonic dystrophy.
Science.
2003;
303
383-387
28
Ladd A N, Charlet N, Cooper T A.
The CELF family of RNA binding proteins is implicated in cell-specific and developmentally regulated alternative splicing.
Mol Cell Biol.
2001;
21
1285-1296
29
Timchenko N A, Cai Z J, Welm A L. et al .
RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1.
J Biol Chem.
2001;
276
7820-7826
30
Schoser B GH, Schneider-Gold C, Reilich P. et al .
Muscle pathology in 57 patients with myotonic dystrophy type 2.
Muscle&Nerve.
2004;
29
275-281
31
Buj-Bello A, Furling D, Tronchere H. et al .
Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells.
Hum Mol Genet.
2002;
11
2297-2307
32
Kanadia R N, Johnstone K A, Mankodi A. et al .
A muscleblind knockout model for myotonic dystrophy.
Science.
2003;
302
1978-1980
33
Savkur R S, Philips A V, Cooper T A. et al .
Insulin receptor splicing alteration in myotonic dystrophy type 2.
Am J Hum Genet.
2004;
74
1309-1313
34
Timchenko N A, Patel R, Iakova P. et al .
Overexpression of CUG triplet repeat binding protein, CUGBP1 in mice inhibits myogenesis.
J Biol Chem.
2004;
279
13129-13139
35
Logigian E L, Moxley R T, Blood C L. et al .
Leukocyte CTG repeat length correlates with severity of myotonia in myotonic dystrophy type 1.
Neurology.
2004;
62
1081-1089
36
Charlet B N, Savkur R S, Singh G. et al .
Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing.
Mol Cell.
2002;
10
45-53
37
Mankodi A, Takahashi M P, Jiang H. et al .
Expanded CUG Repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy.
Mol Cell.
2002;
10
35-44
38
Hund E, Jansen O, Koch M C. et al .
Proximal myotonic myopathy with MRI white matter abnormalities of the brain.
Neurology.
1997;
48
33-37
39
Kassubek J, Juengling F D, Hoffmann S. et al .
Quantification of brain atrophy in patients with myotonic dystrophy and proximal myotonic myopathy: a controlled 3-dimensional magnetic resonance imaging study.
Neurosci Lett.
2003;
348
73-76
40
Kornblum C, Reul J, Kress W. et al .
Cranial magnetic resonance imaging in genetically proven myotonic dystrophy type 1 and 2.
J Neurol.
2004;
251
710-714
41
Meola G, Sansone V, Perani D. et al .
Reduced cerebral blood flow and impaired visual-spatial function in proximal myotonic myopathy.
Neurology.
1999;
53
1042-1050
42
Meola G, Sansone V, Perani D. et al .
Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM1) and in proximal myotonic myopathy (PROMM/DM2).
Neuromuscl Disord.
2003;
13
813-821
43
Schneider C, Reiners K, Toyka K V.
Myotone Dystrophie (DM/Curschmann-Steinert-Erkrankung) und proximale myotone Myopathy (PROMM/Ricker-Syndrom). Myotone Muskelerkrankungen mit multisystemischen Manifestationen.
Nervenarzt.
2001;
72
618-624
44
Sergeant N, Sablonniere B, Schraen-Maschke S. et al .
Dysregulation of human brain microtuble-associated tau mRNA maturation in myotonic dystrophy type 1.
Hum Mol Gen.
2001;
10
2143-2155
45
Udd B, Meola G, Krahe R. et al .
Report of the 115th ENMC workshop: DM2/PROMM and other myotonic dystrophies. 3rd Workshop, 14 - 16 February 2003, Naarden, The Netherlands.
Neuromuscl Disord.
2003;
13
589-596
46
Sarkar P S, Appukuttan B, Han J. et al .
Heterozygous loss of Six5 in mice is sufficient to cause ocular cataracts.
Nat Genet.
2000;
25
110-114
47
Sato S, Nakamura M, Cho D H. et al .
Identification of transcriptional targets for Six5: implication for the pathogenesis of myotonic dystrophy type 1.
Hum Mol Genet.
2002;
11
1045-1058
48
Antonini G, Giubilei F, Mammarella A.
Natural history of cardiac involvement in myotonic dystrophy: correlation with CTG repeats.
Neurology.
2000;
55
1207-1209
49
Bhakta D, Lowe M R, Groh W J.
Prevalence of structural cardiac abnormalities in patients with myotonic dystrophy type 1.
Am Heart J.
2004;
147
224-227
50
Pelargonio G, Dello Russo A, Sanna T. et al .
Myotonic dystrophy and the heart.
Heart.
2002;
88
665-670
51
Schoser B GH, Ricker K, Schneider-Gold C. et al .
Sudden death in myotonic dystrophy type 2.
Neurology.
2004;
63
966-967
52
Schneider-Gold C, Beer M, Kostler H. et al .
Cardiac and skeletal muscle involvement in myotonic dystrophy type 2 (DM2): a quantitative 31P-MRS and MRI study.
Muscle Nerve.
2004;
30
636-644
53
Philips A V, Timchenko L T, Cooper T A.
Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy.
Science.
1998;
280
737-741
54
Savkur R S, Philips A V, Cooper T A.
Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy.
Nat Genet.
2001;
29
40-47
55
Sarkar P S, Paul S, Han J, Reddy S.
Six5 is required for spermatogenic cell survival and spermiogenesis.
Hum Mol Genet.
2004;
13
1421-1431
56
George A, Schneider-Gold C, Zier S. et al .
Musculoskeletal pain in patients with myotonic dystrophy type 2.
Arch Neurol.
2004;
61
1938-1942
57
Meola G, Moxley 3rd
R T.
Myotonic dystrophy type 2 and related myotonic disorders.
J Neurol.
2004;
251
1173-1182
58
Jakubiczka S, Vielhaber S, Kress W. et al .
A strategy for reliable diagnosis of PROMM/DM2.
Neurogenetics.
2004;
5
55-59
59
Schoser B GH, Kress W, Walter M C. et al .
Homozygosity for CCTG mutation in myotonic dystrophy type 2.
Brain.
2004;
127
1868-1877
60
Saalinen R, Vihola A, Bachinski L L. et al .
New methods for molecular diagnosis and demonstration of the (CCTG)n mutation in myotonic dystrophy type 2 (DM2).
Neuromuscul Disord.
2004;
14
274-283
PD Dr. Benedikt G. H. Schoser
Friedrich-Baur-Institut · Neurologische Klinik der Ludwig-Maximilians-Universität München
Ziemssenstraße 1a
80336 München
eMail: bschoser@med.uni-muenchen.de