Synlett 2004(14): 2553-2557  
DOI: 10.1055/s-2004-834824
LETTER
© Georg Thieme Verlag Stuttgart · New York

Effect of Tether Length on Ti(III)-Mediated Cyclization of Epoxyalkenes and Unsaturated Epoxyketones

A. Fernández-Mateos*a, L. Mateos Buróna, E. M. Martín de la Navaa, R. Rabanedo Clementea, R. Rubio Gonzáleza, F. Sanz Gonzálezb
a Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
e-Mail: afmateos@usal.es;
b General X-Ray Diffraction Service, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
Weitere Informationen

Publikationsverlauf

Received 12 July 2004
Publikationsdatum:
20. Oktober 2004 (online)

Preview

Abstract

The chemo- and regioselectivity of the radical cyclization induced by titanocene chloride of a series of epoxyalkenes and another of unsaturated epoxyketones are investigated. 5-Exo and 6-exo cyclizations are the main processes with epoxyalkenes. 3-Exo and 4-exo cyclizations onto the carbonyl group and 6-exo and 8-endo onto the carbon-carbon double bond are the preferred processes with epoxyenones. A tandem reaction, 6-exo onto C=C, followed by a 3-exo onto C=O, and a disfavored 5-endo cyclization onto C=C are reported.

10

General Procedure. A mixture of Cp2TiCl2 (2.2 mmol) and Zn (3.0 mmol) in strictly deoxygenated THF (4 mL) was stirred at r.t. until the red solution turned green. In a separate flask, the epoxy compound (1.0 mmol) was dissolved in strictly deoxygenated THF (10 mL). The green Ti(III) solution was slowly added via cannula to the epoxide solution. After 30 min, an excess of sat. NaH2PO3 was added, and the mixture was stirred for 20 min. The product was extracted into Et2O and washed with sat. NaHCO3 and H2O. After removal of the solvent, the crude product was purified by flash chromatography. All homolytic cleavages were absolutely selective and always afforded the tertiary radical.

11

The relative configuration of the newly created stereocenters has been assigned by spectroscopic data and H-C correlation, except for structures 7b, 8a, and 10b, whose crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 234516, 2345517 and 234515, respectively. Spectroscopic data of three selected compounds: 1-(2-Hydroxy-1,5,5-trimethylbicyclo[4.1.0]hept-7-yl)-propan-2-one ( 5a). IR (film) ν = 3430, 2902, 1715, 1040 cm-1. 1H NMR (CDCl3) δ = 0.39 (1 H, d, J = 5.9 Hz), 0.87 (3 H, s), 0.90 (1 H, m), 1.00 (3 H, s), 1.01 (3 H, s), 0.90-1.30 (4 H, m), 2.13 (3 H, s), 2.13 (1 H, m), 2.79 (1 H, dd, J = 4.2, J′ = 18.8 Hz), 3.81 (1 H, t, J = 6.2 Hz) ppm. 13C NMR (CDCl3) δ = 16.29 (CH), 19.69 (CH3), 26.83 (C), 27.01 (CH2), 27.93 (C), 28.38 (CH3), 29.48 (CH3), 31.38 (CH3), 33.39 (CH2), 39.54 (CH), 42.91 (CH2), 71.96 (CH-O), 210.06 (C=O) ppm. MS (EI): m/z (%) = 210 (19) [M+], 177 (9), 153 (53), 97 (100), 71 (95). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1619. Found: 210.1620.
7-Hydroxy-1,4,4,7a-tetramethyloctahydroinden-2-one ( 7c). IR (film) ν = 3453, 2955, 1732, 1051 cm-1. 1H NMR (CDCl3) δ = 0.81 (3 H, s), 0.90 (3 H, s), 0.94 (3 H, s), 1.09 (3 H, d, J = 6.9 Hz), 1.20-1.70 (4 H, m), 1.52 (1 H, dd, J = 7.7 Hz, J′ = 14 Hz), 2.05 (2 H, m), 2.18 (1 H, dd, J = 7.7 Hz, J′ = 18 Hz), 3.60 (1 H, dd, J = 5.2 Hz, J′ = 10.3 Hz) ppm. 13C NMR (CDCl3) δ = 8.58 (CH3), 9.54 (CH3), 20.62 (CH3), 29.32 (CH2), 31.48 (C), 32.75 (CH3), 35.17 (CH2), 39.79 (CH2), 46.75 (C), 52.01 (CH), 59.23 (CH), 79.91 (CH-O), 217.59 (C=O) ppm. MS (EI): m/z (%) = 210 (41) [M+], 177 (10), 139 (67), 110 (54), 95 (100), 69 (48), 55 (51). HRMS (IE): m/z calcd for C13H22O2 [M+]: 210.1620. Found: 210.1623.
Acetic Acid 4,4,10a-Trimethyl-8-oxododecahydrobenzo-cycloocten-1-yl Ester ( 9b). IR (film) ν = 2953, 1734, 1697, 1244 cm-1. 1H NMR (CDCl3) δ = 0.80 (3 H, s), 0.83 (3 H, s), 0.92 (3 H, s), 1.20-1.70 (11 H, m), 2.04 (3 H, s), 2.25 (2 H, m), 2.66 (2 H, m), 4.78 (1 H, dd, J = 5.6 Hz, J′ = 10 Hz) ppm. 13C NMR (CDCl3) δ = 17.60 (CH3), 21.12 (CH3), 21.27 (CH3), 24.10 (CH2), 25.43 (CH2), 31.25 (CH2), 31.70 (CH2), 31.85 (CH3), 34.81 (C), 38.72 (CH2), 40.41 (CH2), 40.56 (CH2), 41.15 (C), 49.74 (CH), 74.22 (CH-O), 170.30 (C=O), 216.62 (C=O) ppm. MS (EI): m/z (%) = 220 (9) [M+ - 60], 205 (16), 187 (9), 150 (17), 135 (11), 109 (25), 95 (30), 81 (13), 67 (41), 55 (100),(54), 55 (100). HRMS (IE): m/z calcd for C17HO3 [M+]: 280.2038. Found: 280.2033.

13

The diastereomer the 6 afforded exclusively bicyclic diol 6a′ in 70% yield (Scheme [6] ).