Semin Vasc Med 2004; 4(2): 215-223
DOI: 10.1055/s-2004-835381
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001 USA.

High-Density Lipoprotein as a Key Component in the Prevention of Premature Atherosclerotic Disease in the Insulin Resistance Syndrome

Boris Hansel1 , Anatol Kontush1 , Marcel Th.B Twickler2
  • 1Dyslipoproteinemia and Atherosclerosis Research Unit (U.551), National Institute for Health and Medical Research (INSERM) Pitie-Salpetriere Hospital, Paris, France
  • 2Department of Endocrinology and Metabolic Diseases, Catholic University Nijmegen/Radboud University, Nijmegen, The Netherlands
Further Information

Publication History

Publication Date:
11 October 2004 (online)

The occurrence of insulin resistance syndrome (IRS), which is also called the metabolic syndrome, has rapidly increased over the last decade. IRS involves such major clinical features as premature atherosclerosis and its related complications. The major proatherogenic phenotype includes elevated plasma levels of apolipoprotein B-containing lipid particles. Another lipid particle of high-density lipoprotein (HDL) plays a key role in the prevention of atherosclerotic disease. Decreased levels of HDL cholesterol are found in IRS; however, little is known about metabolic pathways related to HDL antiatherogenic properties in this pathological condition. Hitherto, in other dyslipidemic populations, the antiatherogenic properties of HDL have been most frequently characterized in vitro. Recently, knowledge about antiatherogenic pathways in which HDL particles are involved in vivo has been accumulating. Consistent with these developments, new therapeutic strategies can be envisaged for IRS, including treatment with recombinant HDL particles and inhibitors of cholesteryl ester transfer protein.

REFERENCES

  • 1 Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease.  Diabetes. 1988;  37(12) 1595-1607
  • 2 Ruotolo G, Howard B V. Dyslipidemia of the metabolic syndrome.  Curr Cardiol Rep. 2002;  4(6) 494-500
  • 3 Lakka H M, Laaksonen D E, Lakka T A et al.. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.  JAMA. 2002;  288(21) 2709-2716
  • 4 Law M R, Wald N J, Rudnicka A R. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis.  BMJ. 2003;  326(7404) 1423
  • 5 Watts G F, Chan D C, Barrett P H, O'Neill F H, Thompson G R. Effect of a statin on hepatic apolipoprotein B-100 secretion and plasma campesterol levels in the metabolic syndrome.  Int J Obes Relat Metab Disord. 2003;  27(7) 862-865
  • 6 Manninen V, Elo M O, Frick M H et al.. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study.  JAMA. 1988;  260(5) 641-651
  • 7 Kontush A, de Faria E C, Chantepie S, Chapman M J. Antioxidative activity of HDL particle subspecies is impaired in hyperalphalipoproteinemia: relevance of enzymatic and physicochemical properties.  Arterioscler Thromb Vasc Biol. 2004;  24 526-533
  • 8 von Eckardstein A, Nofer J R, Assmann G. High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport.  Arterioscler Thromb Vasc Biol. 2001;  21(1) 13-27
  • 9 Gofman J W, Young W, Tandy R. Ischemic heart disease, atherosclerosis, and longevity.  Circulation. 1966;  34(4) 679-697
  • 10 Salonen J T, Salonen R, Seppanen K, Rauramaa R, Tuomilehto J. HDL, HDL2, and HDL3 subfractions, and the risk of acute myocardial infarction. A prospective population study in eastern Finnish men.  Circulation. 1991;  84(1) 129-139
  • 11 Stampfer M J, Sacks F M, Salvini S, Willett W C, Hennekens C H. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction.  N Engl J Med. 1991;  325(6) 373-381
  • 12 Sweetnam P M, Bolton C H, Yarnell J W et al.. Associations of the HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies.  Circulation. 1994;  90(2) 769-774
  • 13 Lamarche B, Moorjani S, Cantin B, Dagenais G R, Lupien P J, Despres J P. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study.  Arterioscler Thromb Vasc Biol. 1997;  17(6) 1098-1105
  • 14 Fujimoto W Y, Bergstrom R W, Boyko E J et al.. Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study.  Diabetes Care. 1999;  22(11) 1808-1812
  • 15 Yu S, Yarnell J W, Sweetnam P, Bolton C H. High density lipoprotein subfractions and the risk of coronary heart disease: 9-years follow-up in the Caerphilly Study.  Atherosclerosis. 2003;  166(2) 331-338
  • 16 Yoshikawa M, Sakuma N, Hibino T, Sato T, Fujinami T. HDL3 exerts more powerful anti-oxidative, protective effects against copper-catalyzed LDL oxidation than HDL2.  Clin Biochem. 1997;  30(3) 221-225
  • 17 Gowri M S, Van der Westhuyzen D R, Bridges S R, Anderson J W. Decreased protection by HDL from poorly controlled type 2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL.  Arterioscler Thromb Vasc Biol. 1999;  19(9) 2226-2233
  • 18 Kontush A, Chantepie S, Chapman M J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress.  Arterioscler Thromb Vasc Biol. 2003;  23(10) 1881-1888
  • 19 Rajkhowa M, Neary R H, Kumpatla P et al.. Altered composition of high density lipoproteins in women with the polycystic ovary syndrome.  J Clin Endocrinol Metab. 1997;  82(10) 3389-3394
  • 20 Adeli K, Taghibiglou C, Van Iderstine S C, Lewis G F. Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance.  Trends Cardiovasc Med. 2001;  11(5) 170-176
  • 21 Panarotto D, Remillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner.  Eur J Clin Invest. 2002;  32(2) 84-92
  • 22 Assmann G, Nofer J R. Atheroprotective effects of high-density lipoproteins. Annu Rev Med.  2003;  54(7) 321-341
  • 23 Mackness M I, Durrington P N. HDL, its enzymes and its potential to influence lipid peroxidation.  Atherosclerosis. 1995;  115(2) 243-253
  • 24 Decossin C, Tailleux A, Fruchart J C, Fievet C. Prevention of in vitro low-density lipoprotein oxidation by an albumin-containing Lp A-I subfraction.  Biochim Biophys Acta. 1995;  1255(1) 31-38
  • 25 Kunitake S T, Jarvis M R, Hamilton R L, Kane J P. Binding of transition metals by apolipoprotein A-I-containing plasma lipoproteins: inhibition of oxidation of low density lipoproteins.  Proc Natl Acad Sci USA. 1992;  89(15) 6993-6997
  • 26 Parthasarathy S, Barnett J, Fong L G. High-density lipoprotein inhibits the oxidative modification of low-density lipoprotein.  Biochim Biophys Acta. 1990;  1044(2) 275-283
  • 27 Klimov A N, Gurevich V S, Nikiforova A A et al.. Antioxidative activity of high density lipoproteins in vivo.  Atherosclerosis. 1993;  100(1) 13-18
  • 28 Van Lenten B J, Navab M, Shih D, Fogelman A M, Lusis A J. The role of high-density lipoproteins in oxidation and inflammation.  Trends Cardiovasc Med. 2001;  11(3-4) 155-161
  • 29 Durrington P N, Mackness B, Mackness M I. Paraoxonase and atherosclerosis.  Arterioscler Thromb Vasc Biol. 2001;  21(4) 473-480
  • 30 Tsimihodimos V, Karabina S A, Tambaki A P et al.. Atorvastatin preferentially reduces LDL-associated platelet-activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB.  Arterioscler Thromb Vasc Biol. 2002;  22(2) 306-311
  • 31 Goyal J, Wang K, Liu M, Subbaiah P V. Novel function of lecithin-cholesterol acyltransferase.  J Biol Chem. 1997;  272(26) 16231-16239
  • 32 Navab M, Hama S Y, Anantharamaiah G M et al.. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1.  J Lipid Res. 2000;  41(9) 1481-1494
  • 33 Biesbroeck R C, Albers J J, Wahl P W, Weinberg C R, Bassett M L, Bierman E L. Abnormal composition of high density lipoproteins in non-insulin-dependent diabetics.  Diabetes. 1982;  31(2) 126-131
  • 34 Bagdade J D, Lane J T, Stone N, Ritter M C, Subbaiah P V. Persistent abnormalities in lipoprotein composition in noninsulin-dependent diabetes after intensive insulin therapy.  Arteriosclerosis. 1990;  10(2) 232-239
  • 35 Curtiss L K, Bonnet D J, Rye K A. The conformation of apolipoprotein A-I in high-density lipoproteins is influenced by core lipid composition and particle size: a surface plasmon resonance study.  Biochemistry. 2000;  39(19) 5712-5721
  • 36 Frank P G, Marcel Y L. Apolipoprotein A-I: structure-function relationships.  J Lipid Res. 2000;  41(6) 853-872
  • 37 Hedrick C C, Thorpe S R, Fu M X et al.. Glycation impairs high-density lipoprotein function.  Diabetologia. 2000;  43(3) 312-320
  • 38 Borggreve S E, De Vries R, Dullaart R P. Alterations in high-density lipoprotein metabolism and reverse cholesterol transport in insulin resistance and type 2 diabetes mellitus: role of lipolytic enzymes, lecithin:cholesterol acyltransferase and lipid transfer proteins.  Eur J Clin Invest. 2003;  33(12) 1051-1069
  • 39 Alenezi M Y, Marcil M, Blank D, Sherman M, Genest Jr J. Is the decreased high-density lipoprotein cholesterol in the metabolic syndrome due to cellular lipid efflux defect?.  J Clin Endocrinol Metab. 2004;  89(2) 761-764
  • 40 Passarelli M, Shimabukuro A F, Catanozi S et al.. Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus.  Clin Chim Acta. 2000;  301(1-2) 119-134
  • 41 Bhatnagar D, Durrington P N, Kumar S, Mackness M I, Boulton A J. Plasma lipoprotein composition and cholesteryl ester transfer from high density lipoproteins to very low density and low density lipoproteins in patients with non-insulin-dependent diabetes mellitus.  Diabet Med. 1996;  13(2) 139-144
  • 42 Jones R J, Owens D, Brennan C, Collins P B, Johnson A H, Tomkin G H. Increased esterification of cholesterol and transfer of cholesteryl ester to apo B-containing lipoproteins in Type 2 diabetes: relationship to serum lipoproteins A-I and A-II.  Atherosclerosis. 1996;  119(2) 151-157
  • 43 Riemens S C, Van Tol A, Stulp B K, Dullaart R P. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin:cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinemia in non-diabetic men.  J Lipid Res. 1999;  40(8) 1467-1474
  • 44 Murakami T, Michelagnoli S, Longhi R et al.. Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma.  Arterioscler Thromb Vasc Biol. 1995;  15(11) 1819-1828
  • 45 Kramer-Guth A, Quaschning T, Galle J et al.. Structural and compositional modifications of diabetic low-density lipoproteins influence their receptor-mediated uptake by hepatocytes.  Eur J Clin Invest. 1997;  27(6) 460-468
  • 46 Chong P H, Kezele R, Franklin C. High-density lipoprotein cholesterol and the role of statins.  Circ J. 2002;  66(11) 1037-1044
  • 47 Gotto Jr A M. High-density lipoprotein cholesterol and triglycerides as therapeutic targets for preventing and treating coronary artery disease.  Am Heart J. 2002;  144(6 suppl) S33-S42
  • 48 Goldberg A, Alagona Jr P, Capuzzi D M et al.. Multiple-dose efficacy and safety of an extended-release form of niacin in the management of hyperlipidemia.  Am J Cardiol. 2000;  85(9) 1100-1105
  • 49 Freed M I, Ratner R, Marcovina S M et al.. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus.  Am J Cardiol. 2002;  90(9) 947-952
  • 50 Newton R S, Krause B R. HDL therapy for the acute treatment of atherosclerosis.  Atheroscler Suppl. 2002;  3(4) 31-38
  • 51 Nissen S E, Tsunoda T, Tuzcu E M et al.. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.  JAMA. 2003;  290(17) 2292-2300
  • 52 Clark R W, Sutfin T A, Ruggeri R B et al.. Raising high-density lipoprotein in humans through inhibition of cholesteryl ester transfer protein: an initial multidose study of torcetrapib.  Arterioscler Thromb Vasc Biol. 2004;  24 490-497
  • 53 Brousseau M E, Schaefer E J, Wolfe M L et al.. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol.  N Engl J Med. 2004;  350(15) 1505-1515
  • 54 Frick M H, Elo O, Haapa K et al.. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease.  N Engl J Med. 1987;  317(20) 1237-1245
  • 55 Robins S J, Collins D, Wittes J T et al.. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial.  JAMA. 2001;  285(12) 1585-1591

Marcel Th.B TwicklerM.D. Ph.D. 

Department of Endocrinology and Metabolic Diseases,UMC St. Radboud, Catholic University/Radboud University

Geert Grooteplein-Zuid 8, 6525 GA Nijmegen, The Netherlands