References
1
Fry SC.
Biochem. J.
1982,
204:
449
2
Zhu Z.
Synlett
1997,
133
K13:
3a
Kase H.
Kaneko M.
Yamada K.
J. Antibiot.
1987,
40:
450
3b
Yasuzawa T.
Shirahata K.
Sano H.
J. Antibiot.
1987,
40:
455
OF-4949-I-IV:
4a
Sano S.
Ikai K.
Kuroda H.
Nakamura T.
Obayashi A.
Ezure Y.
Enomoto H.
J. Antibiot.
1986,
39:
1674
4b
Sano S.
Ikai K.
Katayama K.
Takesako K.
Nakamura T.
Obayashi A.
Ezure Y.
Enomoto H.
J. Antibiot.
1986,
39:
1685
5 Eurypamides A-D: Reddy MVR.
Harper MK.
Faulkner DJ.
Tetrahedron
1998,
54:
10649
Renieramide:
6a
Ciasullo L.
Casapullo A.
Cutignano A.
Bifulco G.
Debitus C.
Hooper J.
Gomez-Paloma L.
Riccio R.
J. Nat. Prod.
2002,
65:
407
6b Itokawa H, Watanabe K, Kawaoto S, and Inoue T. inventors; Jpn. Kokai Tokkyo Koho JP 63203671.
For leading references to the syntheses of K13, OF4949-I-IV and the eurypamides see:
7a
Ito M.
Yamanaka M.
Kutsumura N.
Nishiyama S.
Tetrahedron
2004,
60:
5623
7b
Jackson RFW.
Perez-Gonzalez M.
Chem. Commun.
2000,
2423
7c
Bigot A.
Bois-Choussy M.
Zhu J.
Tetrahedron Lett.
2000,
41:
4573
7d
Janetka JW.
Rich DH.
J. Am. Chem. Soc.
1997,
119:
6488
7e
Pearson AJ.
Zhang PL.
Lee K.
J. Org. Chem.
1996,
61:
6581
7f
Rao AVR.
Gurjar MK.
Reddy AB.
Khare VB.
Tetrahedron Lett.
1993,
34:
1657
7g
Boger DL.
Yohannes D.
J. Org. Chem.
1990,
55:
6000
7h
Evans DA.
Ellman JA.
J. Am. Chem. Soc.
1989,
111:
1063
7i
Nishiyama S.
Suzuki Y.
Yamamura S.
Tetrahedron Lett.
1989,
30:
379
7j
Schmidt U.
Weller D.
Holder A.
Lieberknecht A.
Tetrahedron Lett.
1988,
29:
3227
8
Lygo B.
Tetrahedron Lett.
1999,
40:
1389
9a
Lygo B.
Allbutt B.
Synlett
2004,
326
9b
Lygo B.
Allbutt B.
James SR.
Tetrahedron Lett.
2003,
44:
5629
10 The enantioselectivity of this alkylation was determined by chiral-phase HPLC comparison of the product 10 with racemic material generated using n-Bu4NBr as the PTC. Use of catalyst 8 led to similar regioselectivity and yield, but gave 10 with only 50% ee.
11
Reinholtz E.
Becker A.
Hagenbruch B.
Schäfer S.
Schmitt A.
Synthesis
1990,
1069
12a
Lygo B.
Andrews BI.
Slack D.
Tetrahedron Lett.
2003,
44:
9039
12b
Lygo B.
Andrews BI.
Tetrahedron Lett.
2003,
44:
4499
12c
Lygo B.
Humphreys LD.
Tetrahedron Lett.
2002,
43:
6677
12d
Lygo B.
Andrews BI.
Crosby J.
Peterson JA.
Tetrahedron Lett.
2002,
43:
8015
12e
Lygo B.
Crosby J.
Lowdon TR.
Wainwright PG.
Tetrahedron
2001,
57:
2391
12f
Lygo B.
Crosby J.
Lowdon TR.
Peterson JA.
Wainwright PG.
Tetrahedron
2001,
57:
2403
12g
Lygo B.
Crosby J.
Peterson JA.
Tetrahedron
2001,
57:
6447
12h
Lygo B.
Wainwright PG.
Tetrahedron Lett.
1997,
38:
8595
13 For application of a related alkylation to the synthesis of the dityrosine fragment of RP66453 see: Boisnard S.
Carbonnelle A.-C.
Zhu J.
Org. Lett.
2001,
3:
2061
14
Representative Alkylation-Hydrolysis Procedure (Preparation of 12): A solution of glycine imine 4a (161 mg, 0.54 mmol) in toluene (4 mL) was placed under a nitrogen atmosphere. Iodide 11 (312 mg, 0.45 mmol), catalyst 8 (36 mg 10 mol%) and 9 M aq KOH (400 µL) were added sequentially, and the resulting mixture stirred at r.t. for 18 h. The toluene layer was then separated and the aqueous layer extracted with EtOAc (3 × 2 mL). The combined organics were dried (MgSO4), and concentrated under reduced pressure. The residue was dissolved in Et2O (10 mL), filtered (to remove catalyst), and again concentrated under reduced pressure. The residue was then dissolved in THF (5 mL) and 15% aq citric acid (1.5 mL) added. The mixture was stirred at r.t. for 18 h, then extracted with CHCl3 (4 × 3 mL). The combined organics were washed with 10% aq Na2CO3 (2 × 4 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (CHCl3-MeOH, 50:1) to yield the orthogonally protected isodityrosine 12 (269 mg, 85%) as a pale yellow oil. R
f = 0.3 (CHCl3-MeOH, 25:1). [α]D +1 (c 0.9, CHCl3). IR (film): νmax = 3376, 2977, 2632, 1714, 1505 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.34-7.23 (10 H, m, ArH), 7.13 (2 H, d, J = 8.0 Hz, ArH), 6.84 (1 H, s, CHPh2), 6.81 (2 H, d, J = 8.0 Hz, ArH), 6.76 (1 H, d, J = 8.0 Hz, ArH), 6.68 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, s, ArH), 4.97 (1 H, br d, J = 8.0 Hz, NH), 4.68-4.60 (1 H, m, CHN), 3.78 (3 H, s, OCH3), 3.64-3.56 (1 H, m, CHN), 3.04 (1 H, dd, J = 6.0, 14.0 Hz, CHCH
a
Hb), 2.99-2.95 (2 H, m, CHCHa
H
b
, CHCH
a
Hb), 2.82 (1 H, dd, J = 8.0, 14.0 Hz, CHCHa
H
b
), 1.44 [9 H, s, C(CH3)3], 1.40 [9 H, s, C(CH3)3]. 13C NMR (125 MHz, CDCl3): δ = 174.2 (C), 170.9 (C), 156.9 (C), 155.0 (C), 150.0 (C), 144.6 (C), 139.6 (C), 139.4 (C), 131.3 (C), 130.5 (CH), 128.6 (CH), 128.5 (CH), 128.2 (CH), 128.0 (CH), 127.5 (CH), 127.0 (CH), 125.7 (CH), 122.4 (CH), 116.9 (CH), 112.8 (CH), 81.3 (C), 80.0 (C), 78.0 (CH), 56.3 (CH), 56.0 (CH3), 54.5 (CH), 40.3 (CH2), 37.4 (CH2), 28.3 (CH3), 28.1 (CH3). MS (ES+): m/z (%) = 719 (28) [M + Na+], 697 (100) [M + H+], 641 (10) [M - t-Bu + H+], 296 (68). HRMS: m/z calcd for C41H49N2O8 [M + H]+: 697.3489. Found: 697.3528.
15 For an alternative approach to orthogonally protected (S,S)-isodityrosines see: Jorgensen KB.
Gautun OR.
Tetrahedron
1999,
55:
10527
16
Kiso Y.
Nakamura S.
Ito K.
Ukawa K.
Kitagawa K.
J. Chem. Soc., Chem. Commun.
1979,
971
17 Selected data for synthetic renieramide (2): Mp 185-195 °C (decomp). [α]D -32 (c 0.1, MeOH) (lit. [α]D -30 (c 0.1, MeOH).6 1H NMR (500 MHz, CD3OD): δ = 7.42 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.20 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.01 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 6.86 (1 H, dd, J = 2.5, 8.0 Hz, ArH), 6.81 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 5.98 (1 H, d, J = 2.0 Hz, ArH), 4.52 (1 H, dd, J = 3.5, 11.5 Hz, CHN), 4.48 (1 H, dd, J = 3.5, 12.5 Hz, CHN), 3.97 (1 H, dd, J = 2.0, 6.0 Hz, CHN), 3.38 (1 H, dd, J = 3.5, 13.0 Hz, CHCH
a
Hb), 3.15 (1 H, dd, J = 2.0, 15.0 Hz, CHCH
a
Hb), 2.91 (1 H, dd, J = 6.0, 15.0 Hz, CHCHa
H
b
), 2.60 (1 H, app. t, J = 12.5 Hz, CHCHa
H
b
) 1.70-1.62 [2 H, m, CH
2
CH(CH3)2], 1.61-1.51 [1 H, m, CH2CH(CH3)2], 0.95 (3 H, d, J = 6.0 Hz, CH3), 0.93 (3 H, d, J = 6.0 Hz, CH3). 13C NMR (125 MHz, CD3OD): δ = 178.1 (C), 172.7 (C), 169.1 (C), 154.6 (C), 149.8 (C), 147.2 (C), 137.1 (C), 133.0 (CH), 131.7 (CH), 125.0 (2 × CH), 123.1 (CH), 122.7 (CH), 117.2 (CH), 116.9 (CH), 58.1 (CH), 53.7 (CH), 52.1 (CH), 43.6 (CH2), 40.9 (CH2), 37.4 (CH2), 26.0 (CH), 23.8 (CH3), 21.6 (CH3).
18 There is a typographical error in the 13C NMR (CD3OD) reported for natural renieramide,6 the CH2 carbon of the l-DOPA fragment occurs at δ = 37.7 ppm (not 43.6). We thank Prof. R. Riccio and Dr. A. Casapullo for kindly providing this information.